We hope that the new structure of nnU-Net v2 makes it much more intuitive on how to modify it! We cannot give an extensive tutorial on how each and every bit of it can be modified. It is better for you to search for the position in the repository where the thing you intend to change is implemented and start working your way through the code from there. Setting breakpoints and debugging into nnU-Net really helps in understanding it and thus will help you make the necessary modifications!
Here are some things you might want to read before you start:
build_network_architecture
function.
Make sure your architecture is compatible with deep supervision (if not, use nnUNetTrainerNoDeepSupervision
as basis!) and that it can handle the patch sizes that are thrown at it! Your architecture should NOT apply any
nonlinearities at the end (softmax, sigmoid etc). nnU-Net does that!PlainConvUNet
class
used by default. It needs to have some sort of GPU memory estimation method that can be used to evaluate whether
certain patch sizes and
topologies fit into a specified GPU memory target. Build a new ExperimentPlanner
that can configure your new
class and communicate with its memory budget estimation. Run nnUNetv2_plan_and_preprocess
while specifying your
custom ExperimentPlanner
and a custom plans_name
. Implement a nnUNetTrainer that can use the plans generated by
your ExperimentPlanner
to instantiate the network architecture. Specify your plans and trainer when running nnUNetv2_train
.
It always pays off to first read and understand the corresponding nnU-Net code and use it as a template for your implementation!NotImplementedError
)Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )