Слияние кода завершено, страница обновится автоматически
''' An example of training a Deep Monte-Carlo (DMC) Agent on the environments in RLCard
'''
import os
import argparse
import torch
import rlcard
from rlcard.agents.dmc_agent import DMCTrainer
def train(args):
# Make the environment
env = rlcard.make(args.env)
# Initialize the DMC trainer
trainer = DMCTrainer(
env,
cuda=args.cuda,
load_model=args.load_model,
xpid=args.xpid,
savedir=args.savedir,
save_interval=args.save_interval,
num_actor_devices=args.num_actor_devices,
num_actors=args.num_actors,
training_device=args.training_device,
)
# Train DMC Agents
trainer.start()
if __name__ == '__main__':
parser = argparse.ArgumentParser("DMC example in RLCard")
parser.add_argument(
'--env',
type=str,
default='leduc-holdem',
choices=[
'blackjack',
'leduc-holdem',
'limit-holdem',
'doudizhu',
'mahjong',
'no-limit-holdem',
'uno',
'gin-rummy'
],
)
parser.add_argument(
'--cuda',
type=str,
default='',
)
parser.add_argument(
'--load_model',
action='store_true',
help='Load an existing model',
)
parser.add_argument(
'--xpid',
default='leduc_holdem',
help='Experiment id (default: leduc_holdem)',
)
parser.add_argument(
'--savedir',
default='experiments/dmc_result',
help='Root dir where experiment data will be saved'
)
parser.add_argument(
'--save_interval',
default=30,
type=int,
help='Time interval (in minutes) at which to save the model',
)
parser.add_argument(
'--num_actor_devices',
default=1,
type=int,
help='The number of devices used for simulation',
)
parser.add_argument(
'--num_actors',
default=5,
type=int,
help='The number of actors for each simulation device',
)
parser.add_argument(
'--training_device',
default="0",
type=str,
help='The index of the GPU used for training models',
)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.cuda
train(args)
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )