id | title | sidebar_label |
---|---|---|
tutorial-transform-spec |
Tutorial: Transforming input data |
Transforming input data |
This tutorial will demonstrate how to use transform specs to filter and transform input data during ingestion.
For this tutorial, we'll assume you've already downloaded Apache Druid as described in the single-machine quickstart and have it running on your local machine.
It will also be helpful to have finished Tutorial: Loading a file and Tutorial: Querying data.
We've included sample data for this tutorial at quickstart/tutorial/transform-data.json
, reproduced here for convenience:
{"timestamp":"2018-01-01T07:01:35Z","animal":"octopus", "location":1, "number":100}
{"timestamp":"2018-01-01T05:01:35Z","animal":"mongoose", "location":2,"number":200}
{"timestamp":"2018-01-01T06:01:35Z","animal":"snake", "location":3, "number":300}
{"timestamp":"2018-01-01T01:01:35Z","animal":"lion", "location":4, "number":300}
We will ingest the sample data using the following spec, which demonstrates the use of transform specs:
{
"type" : "index_parallel",
"spec" : {
"dataSchema" : {
"dataSource" : "transform-tutorial",
"timestampSpec": {
"column": "timestamp",
"format": "iso"
},
"dimensionsSpec" : {
"dimensions" : [
"animal",
{ "name": "location", "type": "long" }
]
},
"metricsSpec" : [
{ "type" : "count", "name" : "count" },
{ "type" : "longSum", "name" : "number", "fieldName" : "number" },
{ "type" : "longSum", "name" : "triple-number", "fieldName" : "triple-number" }
],
"granularitySpec" : {
"type" : "uniform",
"segmentGranularity" : "week",
"queryGranularity" : "minute",
"intervals" : ["2018-01-01/2018-01-03"],
"rollup" : true
},
"transformSpec": {
"transforms": [
{
"type": "expression",
"name": "animal",
"expression": "concat('super-', animal)"
},
{
"type": "expression",
"name": "triple-number",
"expression": "number * 3"
}
],
"filter": {
"type":"or",
"fields": [
{ "type": "selector", "dimension": "animal", "value": "super-mongoose" },
{ "type": "selector", "dimension": "triple-number", "value": "300" },
{ "type": "selector", "dimension": "location", "value": "3" }
]
}
}
},
"ioConfig" : {
"type" : "index_parallel",
"inputSource" : {
"type" : "local",
"baseDir" : "quickstart/tutorial",
"filter" : "transform-data.json"
},
"inputFormat" : {
"type" :"json"
},
"appendToExisting" : false
},
"tuningConfig" : {
"type" : "index_parallel",
"maxRowsPerSegment" : 5000000,
"maxRowsInMemory" : 25000
}
}
}
In the transform spec, we have two expression transforms:
super-animal
: prepends "super-" to the values in the animal
column. This will override the animal
column with the transformed version, since the transform's name is animal
.triple-number
: multiplies the number
column by 3. This will create a new triple-number
column. Note that we are ingesting both the original and the transformed column.Additionally, we have an OR filter with three clauses:
super-animal
values that match "super-mongoose"triple-number
values that match 300location
values that match 3This filter selects the first 3 rows, and it will exclude the final "lion" row in the input data. Note that the filter is applied after the transformation.
Let's submit this task now, which has been included at quickstart/tutorial/transform-index.json
:
bin/post-index-task --file quickstart/tutorial/transform-index.json --url http://localhost:8081
Let's run bin/dsql
and issue a select * from "transform-tutorial";
query to see what was ingested:
dsql> select * from "transform-tutorial";
┌──────────────────────────┬────────────────┬───────┬──────────┬────────┬───────────────┐
│ __time │ animal │ count │ location │ number │ triple-number │
├──────────────────────────┼────────────────┼───────┼──────────┼────────┼───────────────┤
│ 2018-01-01T05:01:00.000Z │ super-mongoose │ 1 │ 2 │ 200 │ 600 │
│ 2018-01-01T06:01:00.000Z │ super-snake │ 1 │ 3 │ 300 │ 900 │
│ 2018-01-01T07:01:00.000Z │ super-octopus │ 1 │ 1 │ 100 │ 300 │
└──────────────────────────┴────────────────┴───────┴──────────┴────────┴───────────────┘
Retrieved 3 rows in 0.03s.
The "lion" row has been discarded, the animal
column has been transformed, and we have both the original and transformed number
column.
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )