1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/icybee-elephantfish

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
elephantfish.py 20 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
bupticybee Отправлено 13.03.2020 21:02 e6e04d3
#!/usr/bin/env pypy
# -*- coding: utf-8 -*-
from __future__ import print_function
import re, sys, time
from itertools import count
from collections import namedtuple
piece = { 'P': 44, 'N': 108, 'B': 23, 'R': 233, 'A': 23, 'C': 101, 'K': 2500}
# 子力价值表参考“象眼”
pst = {
"P": (
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 9, 9, 9, 11, 13, 11, 9, 9, 9, 0, 0, 0, 0,
0, 0, 0, 19, 24, 34, 42, 44, 42, 34, 24, 19, 0, 0, 0, 0,
0, 0, 0, 19, 24, 32, 37, 37, 37, 32, 24, 19, 0, 0, 0, 0,
0, 0, 0, 19, 23, 27, 29, 30, 29, 27, 23, 19, 0, 0, 0, 0,
0, 0, 0, 14, 18, 20, 27, 29, 27, 20, 18, 14, 0, 0, 0, 0,
0, 0, 0, 7, 0, 13, 0, 16, 0, 13, 0, 7, 0, 0, 0, 0,
0, 0, 0, 7, 0, 7, 0, 15, 0, 7, 0, 7, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 11, 15, 11, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
),
"B":(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 40, 0, 0, 0, 40, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 38, 0, 0, 40, 43, 40, 0, 0, 38, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 40, 40, 0, 40, 40, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
),
"N": (
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 90, 90, 90, 96, 90, 96, 90, 90, 90, 0, 0, 0, 0,
0, 0, 0, 90, 96,103, 97, 94, 97,103, 96, 90, 0, 0, 0, 0,
0, 0, 0, 92, 98, 99,103, 99,103, 99, 98, 92, 0, 0, 0, 0,
0, 0, 0, 93,108,100,107,100,107,100,108, 93, 0, 0, 0, 0,
0, 0, 0, 90,100, 99,103,104,103, 99,100, 90, 0, 0, 0, 0,
0, 0, 0, 90, 98,101,102,103,102,101, 98, 90, 0, 0, 0, 0,
0, 0, 0, 92, 94, 98, 95, 98, 95, 98, 94, 92, 0, 0, 0, 0,
0, 0, 0, 93, 92, 94, 95, 92, 95, 94, 92, 93, 0, 0, 0, 0,
0, 0, 0, 85, 90, 92, 93, 78, 93, 92, 90, 85, 0, 0, 0, 0,
0, 0, 0, 88, 85, 90, 88, 90, 88, 90, 85, 88, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
),
"R": (
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,206,208,207,213,214,213,207,208,206, 0, 0, 0, 0,
0, 0, 0,206,212,209,216,233,216,209,212,206, 0, 0, 0, 0,
0, 0, 0,206,208,207,214,216,214,207,208,206, 0, 0, 0, 0,
0, 0, 0,206,213,213,216,216,216,213,213,206, 0, 0, 0, 0,
0, 0, 0,208,211,211,214,215,214,211,211,208, 0, 0, 0, 0,
0, 0, 0,208,212,212,214,215,214,212,212,208, 0, 0, 0, 0,
0, 0, 0,204,209,204,212,214,212,204,209,204, 0, 0, 0, 0,
0, 0, 0,198,208,204,212,212,212,204,208,198, 0, 0, 0, 0,
0, 0, 0,200,208,206,212,200,212,206,208,200, 0, 0, 0, 0,
0, 0, 0,194,206,204,212,200,212,204,206,194, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
),
"C": (
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0,100,100, 96, 91, 90, 91, 96,100,100, 0, 0, 0, 0,
0, 0, 0, 98, 98, 96, 92, 89, 92, 96, 98, 98, 0, 0, 0, 0,
0, 0, 0, 97, 97, 96, 91, 92, 91, 96, 97, 97, 0, 0, 0, 0,
0, 0, 0, 96, 99, 99, 98,100, 98, 99, 99, 96, 0, 0, 0, 0,
0, 0, 0, 96, 96, 96, 96,100, 96, 96, 96, 96, 0, 0, 0, 0,
0, 0, 0, 95, 96, 99, 96,100, 96, 99, 96, 95, 0, 0, 0, 0,
0, 0, 0, 96, 96, 96, 96, 96, 96, 96, 96, 96, 0, 0, 0, 0,
0, 0, 0, 97, 96,100, 99,101, 99,100, 96, 97, 0, 0, 0, 0,
0, 0, 0, 96, 97, 98, 98, 98, 98, 98, 97, 96, 0, 0, 0, 0,
0, 0, 0, 96, 96, 97, 99, 99, 99, 97, 96, 96, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
)
}
pst["A"] = pst["B"]
pst["K"] = pst["P"]
pst["K"] = [i + piece["K"] if i > 0 else 0 for i in pst["K"]]
A0, I0, A9, I9 = 12 * 16 + 3,12 * 16 + 11, 3 * 16 + 3, 3 * 16 + 11
initial = (
' \n' # 0 - 9
' \n' # 10 - 19
' \n' # 10 - 19
' rnbakabnr \n' # 20 - 29
' ......... \n' # 40 - 49
' .c.....c. \n' # 40 - 49
' p.p.p.p.p \n' # 30 - 39
' ......... \n' # 50 - 59
' ......... \n' # 70 - 79
' P.P.P.P.P \n' # 80 - 89
' .C.....C. \n' # 70 - 79
' ......... \n' # 70 - 79
' RNBAKABNR \n' # 90 - 99
' \n' # 100 -109
' \n' # 100 -109
' \n' # 110 -119
)
# Lists of possible moves for each piece type.
N, E, S, W = -16, 1, 16, -1
directions = {
'P': (N, W, E),
'N': (N+N+E, E+N+E, E+S+E, S+S+E, S+S+W, W+S+W, W+N+W, N+N+W),
'B': (2 * N + 2 * E, 2 * S + 2 * E, 2 * S + 2 * W, 2 * N + 2 * W),
'R': (N, E, S, W),
'C': (N, E, S, W),
'A': (N+E, S+E, S+W, N+W),
'K': (N, E, S, W)
}
MATE_LOWER = piece['K'] - (2*piece['R'] + 2*piece['N'] + 2*piece['B'] + 2*piece['A'] + 2*piece['C'] + 5*piece['P'])
MATE_UPPER = piece['K'] + (2*piece['R'] + 2*piece['N'] + 2*piece['B'] + 2*piece['A'] + 2*piece['C'] + 5*piece['P'])
# The table size is the maximum number of elements in the transposition table.
TABLE_SIZE = 1e7
# Constants for tuning search
QS_LIMIT = 219
EVAL_ROUGHNESS = 13
DRAW_TEST = True
THINK_TIME = 5
###############################################################################
# Chess logic
###############################################################################
class Position(namedtuple('Position', 'board score')):
""" A state of a chess game
board -- a 256 char representation of the board
score -- the board evaluation
"""
def gen_moves(self):
# For each of our pieces, iterate through each possible 'ray' of moves,
# as defined in the 'directions' map. The rays are broken e.g. by
# captures or immediately in case of pieces such as knights.
for i, p in enumerate(self.board):
if p == 'K':
for scanpos in range(i - 16,A9,-16):
if self.board[scanpos] == 'k':
yield (i,scanpos)
elif self.board[scanpos] != '.':
break
if not p.isupper(): continue
if p == 'C':
for d in directions[p]:
cfoot = 0
for j in count(i+d, d):
q = self.board[j]
if q.isspace():break
if cfoot == 0 and q == '.':yield (i,j)
elif cfoot == 0 and q != '.':cfoot += 1
elif cfoot == 1 and q.islower(): yield (i,j);break
elif cfoot == 1 and q.isupper(): break;
continue
for d in directions[p]:
for j in count(i+d, d):
q = self.board[j]
# Stay inside the board, and off friendly pieces
if q.isspace() or q.isupper(): break
# 过河的卒/兵才能横着走
if p == 'P' and d in (E, W) and i > 128: break
# j & 15 等价于 j % 16但是更快
elif p in ('A','K') and (j < 160 or j & 15 > 8 or j & 15 < 6): break
elif p == 'B' and j < 128: break
elif p == 'N':
n_diff_x = (j - i) & 15
if n_diff_x == 14 or n_diff_x == 2:
if self.board[i + (1 if n_diff_x == 2 else -1)] != '.': break
else:
if j > i and self.board[i + 16] != '.': break
elif j < i and self.board[i - 16] != '.': break
elif p == 'B' and self.board[i + d // 2] != '.':break
# Move it
yield (i, j)
# Stop crawlers from sliding, and sliding after captures
if p in 'PNBAK' or q.islower(): break
def rotate(self):
''' Rotates the board, preserving enpassant '''
return Position(
self.board[-2::-1].swapcase() + " ", -self.score)
def nullmove(self):
''' Like rotate, but clears ep and kp '''
return self.rotate()
def move(self, move):
i, j = move
p, q = self.board[i], self.board[j]
put = lambda board, i, p: board[:i] + p + board[i+1:]
# Copy variables and reset ep and kp
board = self.board
score = self.score + self.value(move)
# Actual move
board = put(board, j, board[i])
board = put(board, i, '.')
return Position(board, score).rotate()
def value(self, move):
i, j = move
p, q = self.board[i], self.board[j]
# Actual move
score = pst[p][j] - pst[p][i]
# Capture
if q.islower():
score += pst[q.upper()][255-j-1]
return score
###############################################################################
# Search logic
###############################################################################
# lower <= s(pos) <= upper
Entry = namedtuple('Entry', 'lower upper')
class Searcher:
def __init__(self):
self.tp_score = {}
self.tp_move = {}
self.history = set()
self.nodes = 0
def bound(self, pos, gamma, depth, root=True):
""" returns r where
s(pos) <= r < gamma if gamma > s(pos)
gamma <= r <= s(pos) if gamma <= s(pos)"""
self.nodes += 1
# Depth <= 0 is QSearch. Here any position is searched as deeply as is needed for
# calmness, and from this point on there is no difference in behaviour depending on
# depth, so so there is no reason to keep different depths in the transposition table.
depth = max(depth, 0)
# Sunfish is a king-capture engine, so we should always check if we
# still have a king. Notice since this is the only termination check,
# the remaining code has to be comfortable with being mated, stalemated
# or able to capture the opponent king.
if pos.score <= -MATE_LOWER:
return -MATE_UPPER
# We detect 3-fold captures by comparing against previously
# _actually played_ positions.
# Note that we need to do this before we look in the table, as the
# position may have been previously reached with a different score.
# This is what prevents a search instability.
# FIXME: This is not true, since other positions will be affected by
# the new values for all the drawn positions.
if DRAW_TEST:
if not root and pos in self.history:
return 0
# Look in the table if we have already searched this position before.
# We also need to be sure, that the stored search was over the same
# nodes as the current search.
entry = self.tp_score.get((pos, depth, root), Entry(-MATE_UPPER, MATE_UPPER))
if entry.lower >= gamma and (not root or self.tp_move.get(pos) is not None):
return entry.lower
if entry.upper < gamma:
return entry.upper
# Here extensions may be added
# Such as 'if in_check: depth += 1'
# Generator of moves to search in order.
# This allows us to define the moves, but only calculate them if needed.
def moves():
# First try not moving at all. We only do this if there is at least one major
# piece left on the board, since otherwise zugzwangs are too dangerous.
if depth > 0 and not root and any(c in pos.board for c in 'RNC'):
yield None, -self.bound(pos.nullmove(), 1-gamma, depth-3, root=False)
# For QSearch we have a different kind of null-move, namely we can just stop
# and not capture anythign else.
if depth == 0:
yield None, pos.score
# Then killer move. We search it twice, but the tp will fix things for us.
# Note, we don't have to check for legality, since we've already done it
# before. Also note that in QS the killer must be a capture, otherwise we
# will be non deterministic.
killer = self.tp_move.get(pos)
if killer and (depth > 0 or pos.value(killer) >= QS_LIMIT):
yield killer, -self.bound(pos.move(killer), 1-gamma, depth-1, root=False)
# Then all the other moves
for move in sorted(pos.gen_moves(), key=pos.value, reverse=True):
#for val, move in sorted(((pos.value(move), move) for move in pos.gen_moves()), reverse=True):
# If depth == 0 we only try moves with high intrinsic score (captures and
# promotions). Otherwise we do all moves.
if depth > 0 or pos.value(move) >= QS_LIMIT:
yield move, -self.bound(pos.move(move), 1-gamma, depth-1, root=False)
# Run through the moves, shortcutting when possible
best = -MATE_UPPER
for move, score in moves():
best = max(best, score)
if best >= gamma:
# Clear before setting, so we always have a value
if len(self.tp_move) > TABLE_SIZE: self.tp_move.clear()
# Save the move for pv construction and killer heuristic
self.tp_move[pos] = move
break
# Stalemate checking is a bit tricky: Say we failed low, because
# we can't (legally) move and so the (real) score is -infty.
# At the next depth we are allowed to just return r, -infty <= r < gamma,
# which is normally fine.
# However, what if gamma = -10 and we don't have any legal moves?
# Then the score is actaully a draw and we should fail high!
# Thus, if best < gamma and best < 0 we need to double check what we are doing.
# This doesn't prevent sunfish from making a move that results in stalemate,
# but only if depth == 1, so that's probably fair enough.
# (Btw, at depth 1 we can also mate without realizing.)
if best < gamma and best < 0 and depth > 0:
is_dead = lambda pos: any(pos.value(m) >= MATE_LOWER for m in pos.gen_moves())
if all(is_dead(pos.move(m)) for m in pos.gen_moves()):
in_check = is_dead(pos.nullmove())
best = -MATE_UPPER if in_check else 0
# Clear before setting, so we always have a value
if len(self.tp_score) > TABLE_SIZE: self.tp_score.clear()
# Table part 2
if best >= gamma:
self.tp_score[pos, depth, root] = Entry(best, entry.upper)
if best < gamma:
self.tp_score[pos, depth, root] = Entry(entry.lower, best)
return best
def search(self, pos, history=()):
""" Iterative deepening MTD-bi search """
self.nodes = 0
if DRAW_TEST:
self.history = set(history)
# print('# Clearing table due to new history')
self.tp_score.clear()
# In finished games, we could potentially go far enough to cause a recursion
# limit exception. Hence we bound the ply.
for depth in range(1, 1000):
# The inner loop is a binary search on the score of the position.
# Inv: lower <= score <= upper
# 'while lower != upper' would work, but play tests show a margin of 20 plays
# better.
lower, upper = -MATE_UPPER, MATE_UPPER
while lower < upper - EVAL_ROUGHNESS:
gamma = (lower+upper+1)//2
score = self.bound(pos, gamma, depth)
if score >= gamma:
lower = score
if score < gamma:
upper = score
# We want to make sure the move to play hasn't been kicked out of the table,
# So we make another call that must always fail high and thus produce a move.
self.bound(pos, lower, depth)
# If the game hasn't finished we can retrieve our move from the
# transposition table.
yield depth, self.tp_move.get(pos), self.tp_score.get((pos, depth, True),Entry(-MATE_UPPER, MATE_UPPER)).lower
###############################################################################
# User interface
###############################################################################
# Python 2 compatability
if sys.version_info[0] == 2:
input = raw_input
def parse(c):
fil, rank = ord(c[0]) - ord('a'), int(c[1])
return A0 + fil - 16*rank
def render(i):
rank, fil = divmod(i - A0, 16)
return chr(fil + ord('a')) + str(-rank)
def print_pos(pos):
print()
uni_pieces = {'R':'车', 'N':'马', 'B':'相', 'A':'仕', 'K':'帅', 'P':'兵', 'C':'炮',
'r':'俥', 'n':'傌', 'b':'象', 'a':'士', 'k':'将', 'p':'卒', 'c':'砲', '.':'.'}
for i, row in enumerate(pos.board.split()):
print(' ', 9-i, ''.join(uni_pieces.get(p, p) for p in row))
print(' abcdefghi\n\n')
def main():
hist = [Position(initial, 0)]
searcher = Searcher()
while True:
print_pos(hist[-1])
if hist[-1].score <= -MATE_LOWER:
print("You lost")
break
# We query the user until she enters a (pseudo) legal move.
move = None
while move not in hist[-1].gen_moves():
match = re.match('([a-i][0-9])'*2, input('Your move: '))
if match:
move = parse(match.group(1)), parse(match.group(2))
else:
# Inform the user when invalid input (e.g. "help") is entered
print("Please enter a move like h2e2")
hist.append(hist[-1].move(move))
# After our move we rotate the board and print it again.
# This allows us to see the effect of our move.
print_pos(hist[-1].rotate())
if hist[-1].score <= -MATE_LOWER:
print("You won")
break
# Fire up the engine to look for a move.
start = time.time()
for _depth, move, score in searcher.search(hist[-1], hist):
if time.time() - start > THINK_TIME:
break
if score == MATE_UPPER:
print("Checkmate!")
# The black player moves from a rotated position, so we have to
# 'back rotate' the move before printing it.
print("Think depth: {} My move: {}".format(_depth, render(255-move[0] - 1) + render(255-move[1]-1)))
hist.append(hist[-1].move(move))
if __name__ == '__main__':
main()

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/icybee-elephantfish.git
git@api.gitlife.ru:oschina-mirror/icybee-elephantfish.git
oschina-mirror
icybee-elephantfish
icybee-elephantfish
master