1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/larryleifeng-linear-algebra-lecture

В этом репозитории не указан файл с открытой лицензией (LICENSE). При использовании обратитесь к конкретному описанию проекта и его зависимостям в коде.
Клонировать/Скачать
术语表.lyx 12 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
larryeppes Отправлено 06.04.2024 15:00 f4304f6
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options 12pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
术语表
\end_layout
\begin_layout Description
乘法的结合律
\begin_inset Formula $A(BC)=(AB)C$
\end_inset
, 对所有
\begin_inset Formula $A,B,C$
\end_inset
均成立.
\end_layout
\begin_layout Description
系数矩阵 一个矩阵, 它的元素是一个线性方程组的系数.
\end_layout
\begin_layout Description
余子式 一个数
\begin_inset Formula $C_{ij}=(-1)^{i+j}\mathrm{det}A_{ij}$
\end_inset
, 称为矩阵
\begin_inset Formula $A(i,j)$
\end_inset
元素的余子式, 此处
\begin_inset Formula $A_{ij}$
\end_inset
是划去
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $i$
\end_inset
行和
\begin_inset Formula $j$
\end_inset
列后构成的子矩阵.
\end_layout
\begin_layout Description
伴随矩阵 矩阵
\begin_inset Formula $A^{*}$
\end_inset
是方阵
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $(i,j)$
\end_inset
位置的元素, 用
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $(i,j)$
\end_inset
元素的代数余子式代替后,再通过转置得到的矩阵.
\end_layout
\begin_layout Description
分块矩阵 见矩阵分划.
\end_layout
\begin_layout Description
分块矩阵乘法 分块后矩阵的行列乘法, 将块作为数来对待.
\end_layout
\begin_layout Description
上三角形分块矩阵 分块矩阵
\begin_inset Formula $A=\left[A_{ij}\right]$
\end_inset
, 使得一块
\begin_inset Formula $A_{ij}$
\end_inset
\begin_inset Formula $i>j$
\end_inset
是零分块.
\end_layout
\begin_layout Description
分块对角矩阵 一个分块矩阵
\begin_inset Formula $A=\left[A_{ij}\right]$
\end_inset
, 使得
\begin_inset Formula $i\neq j$
\end_inset
时, 每一块
\begin_inset Formula $A_{ij}$
\end_inset
是零矩阵.
\end_layout
\begin_layout Description
非零向量之间的夹角 夹角
\begin_inset Formula $\vartheta$
\end_inset
是指从原点到点
\begin_inset Formula $\boldsymbol{u}$
\end_inset
\begin_inset Formula $\boldsymbol{v}$
\end_inset
的两个线段之间的角度,通过点积联系起来。
\begin_inset Formula
\[
\boldsymbol{u}\cdot\boldsymbol{v}=\|\boldsymbol{u}\|\|\boldsymbol{v}\|\cos\vartheta.
\]
\end_inset
\end_layout
\begin_layout Description
柯西-施瓦茨不等式 对所有
\begin_inset Formula $\boldsymbol{u},\boldsymbol{v}$
\end_inset
\begin_inset Formula $|\langle\boldsymbol{u},\boldsymbol{v}\rangle|\leqslant\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|$
\end_inset
.
\end_layout
\begin_layout Description
向量空间中的一个非平凡子空间的基 一 个
\begin_inset Formula $V$
\end_inset
中的向量集
\begin_inset Formula $\mathcal{B}=\left\{ \boldsymbol{v}_{1},\cdots,\boldsymbol{v}_{p}\right\} $
\end_inset
, 使得
\begin_inset Newline newline
\end_inset
(i)
\begin_inset Formula $\mathcal{B}$
\end_inset
是线性无关集,
\begin_inset Newline newline
\end_inset
(ii) 由
\begin_inset Formula $\mathcal{B}$
\end_inset
生成的子空间和
\begin_inset Formula $H$
\end_inset
一致, 即
\begin_inset Formula $H=\mathrm{Span}\left\{ \boldsymbol{v}_{1},\cdots,\boldsymbol{v}_{p}\right\} $
\end_inset
.
\begin_inset Formula $\mathcal{B}$
\end_inset
-coordinates of
\begin_inset Formula $x$
\end_inset
, (
\begin_inset Formula $x$
\end_inset
\begin_inset Formula $\mathcal{B}$
\end_inset
坐标) 即
\begin_inset Formula $x$
\end_inset
相对于基
\begin_inset Formula $\mathcal{B}$
\end_inset
的坐标.
\end_layout
\begin_layout Description
基本变量 线性方程组中对应系数矩阵主元列的变量.
\end_layout
\begin_layout Description
增广矩阵 一个由线性方程组的系数矩阵和右边增加一列或多列构成的矩阵, 每一个增加的列包含给定系数矩阵对应方程组右边的常数项.
\end_layout
\begin_layout Description
代数重数 一个特征值的重数是作为特征方程的根的重数.
\end_layout
\begin_layout Description
\begin_inset Formula $A$
\end_inset
的特征方程
\begin_inset Formula $\mathrm{det}(A-\lambda I)=0$
\end_inset
.
\end_layout
\begin_layout Description
\begin_inset Formula $A$
\end_inset
的特征多项式
\begin_inset Formula $\mathrm{det}(A-\lambda I)$
\end_inset
或在有些教材中,
\begin_inset Formula $\mathrm{det}(\lambda I-A)$
\end_inset
.
\end_layout
\begin_layout Description
基的变换 见矩阵坐标变换.
\end_layout
\begin_layout Description
从一个基
\begin_inset Formula $\mathcal{B}$
\end_inset
到一个基
\begin_inset Formula $\mathcal{C}$
\end_inset
的矩阵坐标变换 一个矩阵
\begin_inset Formula $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$
\end_inset
\begin_inset Formula $\mathcal{B}$
\end_inset
坐标向量变换为
\begin_inset Formula $\mathcal{C}$
\end_inset
坐标向量,
\begin_inset Formula $[\boldsymbol{x}]_{\mathcal{C}}=\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}[\boldsymbol{x}]_{\mathcal{B}}$
\end_inset
, 如果
\begin_inset Formula $\mathcal{C}$
\end_inset
\begin_inset Formula $\mathbb{R}^{n}$
\end_inset
中的标准基, 那么有时也将
\begin_inset Formula $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$
\end_inset
记作
\begin_inset Formula $P_{\mathcal{B}}$
\end_inset
.
\end_layout
\begin_layout Description
楚列斯基分解 一个分解
\begin_inset Formula $A=R^{\mathrm{T}}R$
\end_inset
, 此处
\begin_inset Formula $R$
\end_inset
是一个可逆上三角形矩阵, 它的所有对角元素为正的.
\end_layout
\begin_layout Description
变换
\begin_inset Formula $T:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$
\end_inset
的余定义域 集合
\begin_inset Formula $\mathbb{R}^{m}$
\end_inset
包含变换
\begin_inset Formula $T$
\end_inset
的值域,通常,如果
\begin_inset Formula $T$
\end_inset
映射一个向量空间
\begin_inset Formula $V$
\end_inset
到另一个向量空间
\begin_inset Formula $W$
\end_inset
, 那么
\begin_inset Formula $W$
\end_inset
被称为
\begin_inset Formula $T$
\end_inset
的余定义域.
\end_layout
\begin_layout Description
关于
\begin_inset Formula $T$
\end_inset
\begin_inset Formula $\mathcal{B}$
\end_inset
-矩阵 对
\begin_inset Formula $V$
\end_inset
中关于基
\begin_inset Formula $\mathcal{B}$
\end_inset
的一个线性变换:
\begin_inset Formula $T:V\rightarrow V$
\end_inset
对应的矩阵
\begin_inset Formula $[T]_{\mathcal{B}}$
\end_inset
, 它具有如下的性质, 对
\begin_inset Formula $V$
\end_inset
中所有的
\begin_inset Formula $\boldsymbol{x}$
\end_inset
,
\begin_inset Formula $[T(\boldsymbol{x})]_{\mathcal{B}}=[\boldsymbol{T}]_{\mathcal{B}}[\boldsymbol{x}]_{\mathcal{B}}$
\end_inset
成立.
\end_layout
\begin_layout Description
带形矩阵 一个矩阵, 它的非零元素位于主对角线的上下两侧的带形以内.
\end_layout
\begin_layout Description
最佳逼近 给定子空间中离给定向量的最近点.
\end_layout
\begin_layout Description
两对角线矩阵 一个非零元素位于主对角线和与主对角线相邻的一斜对角线上的矩阵.
\end_layout
\begin_layout Description
仿射变换 一个形如
\begin_inset Formula $T(x)=Ax+b$
\end_inset
的映射
\begin_inset Formula $T:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}$
\end_inset
, 此处
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $m\times n$
\end_inset
矩阵且
\begin_inset Formula $b$
\end_inset
属于
\begin_inset Formula $\mathbb{R}^{m}$
\end_inset
.
\end_layout
\begin_layout Description
动力系统的吸引子 所有轨迹都趋于的点.
\end_layout
\begin_layout Description
辅助方程 一个关于变量
\begin_inset Formula $r$
\end_inset
的多项式方程, 来源于齐次差分方程的系数.
\end_layout
\end_body
\end_document

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/larryleifeng-linear-algebra-lecture.git
git@api.gitlife.ru:oschina-mirror/larryleifeng-linear-algebra-lecture.git
oschina-mirror
larryleifeng-linear-algebra-lecture
larryleifeng-linear-algebra-lecture
master