1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/larryleifeng-linear-algebra-lecture

В этом репозитории не указан файл с открытой лицензией (LICENSE). При использовании обратитесь к конкретному описанию проекта и его зависимостям в коде.
Клонировать/Скачать
结式.lyx 13 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
larryeppes Отправлено 06.04.2024 15:00 f4304f6
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{amsmath, amsthm, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options a4paper,UTF8
\use_default_options true
\begin_modules
theorems-ams-chap-bytype
theorems-ams-extended-chap-bytype
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
结式
\end_layout
\begin_layout Standard
结式 (resultant) 是代数学术语, 指由两个多项式的系数所构成的一种行列式, 或称 Sylvester 行列式, 结式可判断两个多项式是否有公根、是否
互素, 以及判断多项式是否有重根.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\begin{aligned}f(x) & =a_{0}x^{n}+a_{1}x^{n-1}+\ldots+a_{n},\\
g(x) & =b_{0}x^{m}+b_{1}x^{m-1}+\ldots+b_{m}.
\end{aligned}
\]
\end_inset
定义下列
\begin_inset Formula $m+n$
\end_inset
阶行列式
\begin_inset Formula
\[
\mathrm{Res}(f,g)=\begin{vmatrix}a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n} & 0 & \cdots & 0\\
0 & a_{0} & a_{1} & \cdots & \cdots & a_{n-1} & a_{n} & \cdots & 0\\
0 & 0 & a_{0} & \cdots & \cdots & a_{n-2} & a_{n-1} & \cdots & 0\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
0 & 0 & \cdots & 0 & a_{0} & \cdots & \cdots & \cdots & a_{n}\\
b_{0} & b_{1} & b_{2} & \cdots & \cdots & \cdots & b_{m} & \cdots & 0\\
0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & b_{m-1} & b_{m} & \cdots\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
0 & \cdots & 0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & b_{m}
\end{vmatrix}
\]
\end_inset
\begin_inset Formula $f(x)$
\end_inset
\begin_inset Formula $g(x)$
\end_inset
的结式或称 Sylvester 行列式.
\end_layout
\begin_layout Standard
根据以上定义我们可以有下列判断两个多项式存在公共根的定理.
\end_layout
\begin_layout Theorem
\begin_inset CommandInset label
LatexCommand label
name "thm:sylvester"
\end_inset
多项式
\begin_inset Formula $f(x)$
\end_inset
\begin_inset Formula $g(x)$
\end_inset
有公共根 (在复数域中) 的充分必要条件是它们的结式
\begin_inset Formula $\mathrm{Res}(f,g)=0$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Proof
由条件知, 多项式
\begin_inset Formula $f(x)$
\end_inset
\begin_inset Formula $g(x)$
\end_inset
有公共根
\begin_inset Formula $x=t_{0}$
\end_inset
, 不妨设
\begin_inset Formula $a_{n}$
\end_inset
\begin_inset Formula $b_{m}$
\end_inset
不同时零, (否则结式中最后一列为零, 结论显然), 因此
\begin_inset Formula $x_{0}\ne0$
\end_inset
.
\end_layout
\begin_layout Proof
考虑到
\begin_inset Formula
\[
\begin{cases}
a_{0}t_{0}^{m+n-1}+a_{1}t_{0}^{m+n-2}+\ldots+a_{n}t_{0}^{m-1}=0\\
\cdots\\
a_{0}t_{0}^{n+1}+a_{1}t_{0}^{n}+\ldots+a_{n}t_{0}=0\\
a_{0}t_{0}^{n}+a_{1}t_{0}^{n-1}+\ldots+a_{n}=0
\end{cases}\quad\begin{cases}
b_{0}t_{0}^{m+n-1}+b_{1}t_{0}^{m+n-2}+\ldots+b_{m}t_{0}^{n-1}=0\\
\cdots\\
b_{0}t_{0}^{m+1}+b_{1}t_{0}^{m}+\ldots+b_{m}t_{0}=0\\
b_{0}t_{0}^{m}+b_{1}t_{0}^{m-1}+\ldots+b_{m}=0
\end{cases}
\]
\end_inset
现在令
\begin_inset Formula $x_{r}=t_{0}^{r}$
\end_inset
, (
\begin_inset Formula $r=0,1,2,\cdots,m+n-1$
\end_inset
), 则
\begin_inset Formula $(m+n)$
\end_inset
元一次方程组
\begin_inset Formula
\[
\begin{cases}
a_{0}x_{m+n-1}+a_{1}x_{m+n-2}+\ldots+a_{n}x_{m-1}=0,\\
\cdots\\
a_{0}x_{n}+a_{1}x_{n-1}+\ldots+a_{n}x_{0}=0\\
b_{0}x_{m+n-1}+b_{1}x_{m+n-2}+\ldots+b_{m}x_{n-1}=0\\
\cdots\\
b_{0}x_{m}+b_{1}x_{m-1}+\ldots+b_{m}x_{0}=0
\end{cases}
\]
\end_inset
有非零解
\begin_inset Formula $(x_{0},x_{1},x_{2},\cdots,x_{m+n-1})=(1,t_{0},t_{0}^{2},\cdots,t_{0}^{m+n-1})$
\end_inset
, 由齐次线性方程组的克莱姆法则的逆定理, 上式对应的系数行列式为零.
也即
\begin_inset Formula
\[
\mathrm{Res}(f,g)=\begin{vmatrix}a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n} & 0 & \cdots & 0\\
0 & a_{0} & a_{1} & \cdots & \cdots & a_{n-1} & a_{n} & \cdots & 0\\
0 & 0 & a_{0} & \cdots & \cdots & a_{n-2} & a_{n-1} & \cdots & 0\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
0 & 0 & \cdots & 0 & a_{0} & \cdots & \cdots & \cdots & a_{n}\\
b_{0} & b_{1} & b_{2} & \cdots & \cdots & \cdots & b_{m} & \cdots & 0\\
0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & b_{m-1} & b_{m} & \cdots\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
0 & \cdots & 0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & b_{m}
\end{vmatrix}=0.
\]
\end_inset
\end_layout
\begin_layout Corollary
\begin_inset Formula $f(x),g(x)\in\mathbb{C}[X]$
\end_inset
, 方程组
\begin_inset Formula $\begin{cases}
f(x)=0\\
g(x)=0
\end{cases}$
\end_inset
有复数解当且仅当结式
\begin_inset Formula $\mathrm{Res}(f,g)=0$
\end_inset
.
\end_layout
\begin_layout Standard
这就把一元方程组是否有解归纳为一个常数
\begin_inset Formula $\mathrm{Res}(f,g)$
\end_inset
是否为
\begin_inset Formula $0$
\end_inset
.
\end_layout
\begin_layout Standard
现设
\begin_inset Formula $f(x,y),g(x,y)\in F[X,Y]$
\end_inset
为二元多项式, 现在解方程
\begin_inset Formula
\[
\begin{cases}
f(x,y)=0,\\
g(x,y)=0.
\end{cases}
\]
\end_inset
可以把
\begin_inset Formula $f$
\end_inset
\begin_inset Formula $g$
\end_inset
看作不定元
\begin_inset Formula $x$
\end_inset
的 (以
\begin_inset Formula $y$
\end_inset
的多项式为系数的) 多项式, 即
\begin_inset Formula
\[
\begin{cases}
f(x,y)=a_{0}(y)x^{n}+\cdots+a_{n}(y)\in F[y][x],\\
g(x,y)=b_{0}(y)x^{m}+\cdots+b_{m}(y)\in F[y][x].
\end{cases}
\]
\end_inset
\end_layout
\begin_layout Standard
于是由定理
\begin_inset CommandInset ref
LatexCommand ref
reference "thm:sylvester"
plural "false"
caps "false"
noprefix "false"
\end_inset
(其中
\begin_inset Formula $a_{k}(y)$
\end_inset
\begin_inset Formula $b_{k}(y)$
\end_inset
为变量
\begin_inset Formula $y$
\end_inset
的多项式), 如果上述方程有解
\begin_inset Formula $(x,y)=(x_{0},y_{0})$
\end_inset
使得
\begin_inset Formula
\[
\begin{cases}
f(x_{0},y_{0})=0,\\
g(x_{0},y_{0})=0.
\end{cases}
\]
\end_inset
则必有
\begin_inset Formula
\[
\mathrm{Res}(f,g,x)\coloneqq\begin{vmatrix}a_{0} & a_{1} & a_{2} & \cdots & \cdots & a_{n} & 0 & \cdots & 0\\
0 & a_{0} & a_{1} & \cdots & \cdots & a_{n-1} & a_{n} & \cdots & 0\\
0 & 0 & a_{0} & \cdots & \cdots & a_{n-2} & a_{n-1} & \cdots & 0\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
0 & 0 & \cdots & 0 & a_{0} & \cdots & \cdots & \cdots & a_{n}\\
b_{0} & b_{1} & b_{2} & \cdots & \cdots & \cdots & b_{m} & \cdots & 0\\
0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & b_{m-1} & b_{m} & \cdots\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\
0 & \cdots & 0 & b_{0} & b_{1} & \cdots & \cdots & \cdots & b_{m}
\end{vmatrix}(y)=0.
\]
\end_inset
\end_layout
\begin_layout Corollary
多项式
\begin_inset Formula $f(x)$
\end_inset
\begin_inset Formula $g(x)$
\end_inset
互素的充分必要条件是它们的结式
\begin_inset Formula $\mathrm{Res}(f,g)\neq0$
\end_inset
.
\end_layout
\begin_layout Theorem
\begin_inset Formula
\[
\begin{aligned}f(x) & =a_{0}x^{n}+a_{1}x^{n-1}+\ldots+a_{n},\\
g(x) & =b_{0}x^{m}+b_{1}x^{m-1}+\ldots+b_{m}.
\end{aligned}
\]
\end_inset
\begin_inset Formula $f(x)$
\end_inset
的根为
\begin_inset Formula $x_{1},x_{2},\ldots,x_{n}$
\end_inset
,
\begin_inset Formula $g(x)$
\end_inset
的根为
\begin_inset Formula $y_{1},y_{2},\ldots,y_{m}$
\end_inset
, 则
\begin_inset Formula $f(x)$
\end_inset
\begin_inset Formula $g(x)$
\end_inset
的结式为
\begin_inset Formula
\[
\mathrm{Res}(f,g)=a_{0}^{m}b_{0}^{n}\prod_{j=1}^{m}\prod_{i=1}^{n}\left(x_{i}-y_{j}\right).
\]
\end_inset
\end_layout
\begin_layout Definition
利用结式, 可定义多项式的判别式如下.
多项式
\begin_inset Formula
\[
f(x)=a_{0}x^{n}+a_{1}x^{n-1}+\ldots+a_{n}
\]
\end_inset
的判别式定义为
\begin_inset Formula
\[
\Delta(f)=(-1)^{\frac{1}{2}n(n-1)}a_{0}^{-1}\mathrm{Res}\left(f,f^{\prime}\right).
\]
\end_inset
\end_layout
\begin_layout Theorem
多项式
\begin_inset Formula
\[
f(x)=a_{0}x^{n}+a_{1}x^{n-1}+\ldots+a_{n}
\]
\end_inset
的判别式等于
\begin_inset Formula
\[
\Delta(f)=a_{0}^{2n-2}\prod_{1\leq i<j\leq n}\left(x_{i}-x_{j}\right)^{2},
\]
\end_inset
其中
\begin_inset Formula $x_{1},x_{2},\ldots,x_{n}$
\end_inset
\begin_inset Formula $f(x)$
\end_inset
的根.
\end_layout
\begin_layout Corollary
多项式
\begin_inset Formula $f(x)$
\end_inset
有重根的充分必要条件是它的判别式
\begin_inset Formula $\Delta(f)=0$
\end_inset
.
\end_layout
\end_body
\end_document

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/larryleifeng-linear-algebra-lecture.git
git@api.gitlife.ru:oschina-mirror/larryleifeng-linear-algebra-lecture.git
oschina-mirror
larryleifeng-linear-algebra-lecture
larryleifeng-linear-algebra-lecture
master