1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/larryleifeng-linear-algebra-lecture

В этом репозитории не указан файл с открытой лицензией (LICENSE). При использовании обратитесь к конкретному описанию проекта и его зависимостям в коде.
Клонировать/Скачать
la002-2-ppt.lyx 75 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
larryeppes Отправлено 25.03.2024 05:30 8e44528
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass beamer
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
\usepackage{tkz-euclide}
\usepackage{tikz}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage[define-L-C-R]{nicematrix}
\usetheme[lw]{uantwerpen}
\AtBeginDocument{
\renewcommand\logopos{111.png}
\renewcommand\logoneg{111.png}
\renewcommand\logomonowhite{111.png}
\renewcommand\iconfile{111.png}
}
\setbeamertemplate{theorems}[numbered]
\AtBeginSection[]
{
\begin{frame}{章节内容}
\transfade%淡入淡出效果
\begin{multicols}{2}
\tableofcontents[sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
\end{multicols}
\addtocounter{framenumber}{-1} %目录页不计算页码
\end{frame}
}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options aspectratio = 1610, 11pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
矩阵的运算
\end_layout
\begin_layout Subsection
矩阵的线性运算
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的线性运算
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
设有两个
\begin_inset Formula $m\times n$
\end_inset
矩阵
\begin_inset Formula $A=(a_{ij})$
\end_inset
\begin_inset Formula $B=(b_{ij})$
\end_inset
, 矩阵
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $B$
\end_inset
\series bold
\series default
记作
\begin_inset Formula $A+B$
\end_inset
, 规定为
\begin_inset Formula
\[
A+B=(a_{ij}+b_{ij})_{m\times n}=\begin{bmatrix}a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n}\\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn}
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Remark*
只有两个矩阵是同型矩阵时, 才能进行矩阵的加法运算.
两个同型矩阵的和, 即为两个矩阵对应位置元素相加得到的矩阵.
\end_layout
\begin_layout Definition
设矩阵
\begin_inset Formula $A=\left(a_{ij}\right)$
\end_inset
, 记
\begin_inset Formula
\[
-A=\left(-a_{ij}\right),
\]
\end_inset
\begin_inset Formula $-A$
\end_inset
为矩阵
\begin_inset Formula $A$
\end_inset
\series bold
负矩阵
\series default
, 显然有
\begin_inset Formula
\[
A+(-A)=O\text{. }
\]
\end_inset
由此规定矩阵的减法为
\begin_inset Formula
\[
A-B=A+(-B).
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Definition
\begin_inset Formula $k$
\end_inset
与矩阵
\begin_inset Formula $A$
\end_inset
的乘积记作
\begin_inset Formula $kA$
\end_inset
\begin_inset Formula $Ak$
\end_inset
, 规定为
\begin_inset Formula
\[
kA=Ak=(ka_{ij})=\begin{bmatrix}ka_{11} & ka_{12} & \cdots & ka_{1n}\\
ka_{21} & ka_{22} & \cdots & ka_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
ka_{m1} & ka_{m2} & \cdots & ka_{mn}
\end{bmatrix}.
\]
\end_inset
数与矩阵的乘积运算称为
\series bold
数乘运算
\series default
.
\end_layout
\begin_layout Definition
\end_layout
\begin_layout Standard
矩阵的加法与矩阵的数乘两种运算统称为
\series bold
矩阵的线性运算
\series default
.
它满足下列运算规律:
\end_layout
\begin_layout Standard
\begin_inset Formula $A,B,C,O$
\end_inset
都是同型矩阵,
\begin_inset Formula $k,l$
\end_inset
是常数, 则
\end_layout
\begin_layout Enumerate
\begin_inset Formula $A+B=B+A$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(A+B)+C=A+(B+C)$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $A+O=A$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $A+(-A)=O$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $1A=A$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(kl)A=k(lA)$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(k+l)A=kA+lA$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $k(A+B)=kA+kB$
\end_inset
.
\end_layout
\begin_layout Remark*
在数学中, 把满足上述八条规律的运算称为
\series bold
线性运算
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的线性运算
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
已知
\begin_inset Formula $A=\begin{bmatrix}-1 & 2 & 3 & 1\\
0 & 3 & -2 & 1\\
4 & 0 & 3 & 2
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}4 & 3 & 2 & -1\\
5 & -3 & 0 & 1\\
1 & 2 & -5 & 0
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $3A-2B$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
3A-2B & =3\begin{bmatrix}-1 & 2 & 3 & 1\\
0 & 3 & -2 & 1\\
4 & 0 & 3 & 2
\end{bmatrix}-2\begin{bmatrix}4 & 3 & 2 & -1\\
5 & -3 & 0 & 1\\
1 & 2 & -5 & 0
\end{bmatrix}=\begin{bmatrix}-3-8 & 6-6 & 9-4 & 3+2\\
0-10 & 9+6 & -6-0 & 3-2\\
12-2 & 0-4 & 9+10 & 6-0
\end{bmatrix}\\
& =\begin{bmatrix}-11 & 0 & 5 & 5\\
-10 & 15 & -6 & 1\\
10 & -4 & 19 & 6
\end{bmatrix}.
\end{align*}
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的线性运算
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
已知
\begin_inset Formula $A=\begin{bmatrix}3 & -1 & 2 & 0\\
1 & 5 & 7 & 9\\
2 & 4 & 6 & 8
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}7 & 5 & -2 & 4\\
5 & 1 & 9 & 7\\
3 & 2 & -1 & 6
\end{bmatrix}$
\end_inset
, 且
\begin_inset Formula $A+2X=B$
\end_inset
, 求
\begin_inset Formula $X$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula $X=\frac{1}{2}(B-A)=\frac{1}{2}\begin{bmatrix}4 & 6 & -4 & 4\\
4 & -4 & 2 & -2\\
1 & -2 & -7 & -2
\end{bmatrix}=\begin{bmatrix}2 & 3 & -2 & 2\\
2 & -2 & 1 & -1\\
\frac{1}{2} & -1 & -\frac{7}{2} & -1
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Remark*
\begin_inset Formula $n$
\end_inset
阶数量矩阵
\begin_inset Formula $A=\begin{bmatrix}a & 0 & \cdots & 0\\
0 & a & \cdots & 0\\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & a
\end{bmatrix}=aE_{n}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Subsection
矩阵的相乘
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的相乘
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\begin_inset Formula
\[
A=\left(a_{ij}\right)_{m\times s}=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1s}\\
a_{2s} & a_{2s} & \cdots & a_{2s}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{ms}
\end{bmatrix},\quad B=\left(b_{ij}\right)_{s\times n}=\begin{bmatrix}b_{11} & b_{12} & \cdots & b_{1n}\\
b_{21} & b_{22} & \cdots & b_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
b_{s1} & b_{s2} & \cdots & b_{sn}
\end{bmatrix}
\]
\end_inset
矩阵
\begin_inset Formula $A$
\end_inset
与矩阵
\begin_inset Formula $B$
\end_inset
\color red
乘积
\color inherit
记作
\begin_inset Formula $AB$
\end_inset
, 规定为
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\begin_inset Formula
\[
AB=\left(c_{ij}\right)_{m\times n}=\begin{bmatrix}c_{11} & c_{12} & \cdots & c_{1n}\\
c_{21} & c_{22} & \cdots & c_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
c_{m1} & c_{m2} & \cdots & c_{mn}
\end{bmatrix},
\]
\end_inset
其中
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\begin_inset Formula
\[
c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}={\color{gray}\sum_{k=1}^{s}}{\color{red}a_{ik}b_{kj}},\quad(i=1,2,\cdots,m;\ j=1,2,\cdots,n).
\]
\end_inset
记号
\begin_inset Formula $AB$
\end_inset
常读作
\begin_inset Formula $A$
\end_inset
左乘
\begin_inset Formula $B$
\end_inset
\begin_inset Formula $B$
\end_inset
右乘
\begin_inset Formula $A$
\end_inset
.
\end_layout
\begin_layout Remark*
只有当
\color magenta
左边矩阵的列数等于右边矩阵的行数
\color inherit
时, 两个矩阵才能进行乘法运算.
\end_layout
\begin_layout Standard
\begin_inset Formula $C=AB$
\end_inset
, 则矩阵
\begin_inset Formula $C$
\end_inset
的元素
\begin_inset Formula $c_{ij}$
\end_inset
即为矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $i$
\end_inset
行元素与矩阵
\begin_inset Formula $B$
\end_inset
的第
\begin_inset Formula $j$
\end_inset
列对应元素乘积的和.
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-10mm}
\end_layout
\end_inset
\end_layout
\begin_layout ColumnsCenterAligned
\end_layout
\begin_deeper
\begin_layout Column
6cm
\end_layout
\end_deeper
\begin_layout ColumnsCenterAligned
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
hspace{24mm}
\end_layout
\end_inset
\begin_inset Formula $c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{is}b_{sj}.$
\end_inset
\end_layout
\begin_deeper
\begin_layout Column
7cm
\end_layout
\end_deeper
\begin_layout ColumnsCenterAligned
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
usetikzlibrary{fit}
\end_layout
\begin_layout Plain Layout
\backslash
tikzset{highlight/.style={rectangle,
\end_layout
\begin_layout Plain Layout
fill=red!15,
\end_layout
\begin_layout Plain Layout
blend mode = multiply,
\end_layout
\begin_layout Plain Layout
rounded corners = 0.5 mm,
\end_layout
\begin_layout Plain Layout
inner sep=1pt,
\end_layout
\begin_layout Plain Layout
fit = #1}}
\end_layout
\begin_layout Plain Layout
\backslash
tikzset{mes-options/.style={remember picture,
\end_layout
\begin_layout Plain Layout
overlay,
\end_layout
\begin_layout Plain Layout
name prefix = exemple-,
\end_layout
\begin_layout Plain Layout
highlight/.style = {fill = red!15,
\end_layout
\begin_layout Plain Layout
blend mode = multiply,
\end_layout
\begin_layout Plain Layout
inner sep = 0pt,
\end_layout
\begin_layout Plain Layout
fit = #1}}}
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\begin_layout Plain Layout
\backslash
begin{NiceArray}{*{6}{c}@{
\backslash
hspace{6mm}}*{5}{c}}[nullify-dots]
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
SubMatrix[{2-7}{6-11}]
\end_layout
\begin_layout Plain Layout
\backslash
SubMatrix[{7-2}{11-6}]
\end_layout
\begin_layout Plain Layout
\backslash
SubMatrix[{7-7}{11-11}]
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
& & & & & & & &
\backslash
color{blue}
\backslash
scriptstyle C_j
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & b_{11} &
\backslash
Cdots & b_{1j} &
\backslash
Cdots & b_{1n}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & &
\backslash
Vdots & &
\backslash
Vdots & &
\backslash
Vdots
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & & & b_{kj}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & & &
\backslash
Vdots
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & b_{n1} &
\backslash
Cdots & b_{nj} &
\backslash
Cdots & b_{nn}
\backslash
\backslash
[3mm]
\end_layout
\begin_layout Plain Layout
& a_{11} &
\backslash
Cdots & & & a_{1n}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
Vdots & & & &
\backslash
Vdots & & &
\backslash
Vdots
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
color{blue}
\backslash
scriptstyle L_i & a_{i1} &
\backslash
Cdots & a_{ik} &
\backslash
Cdots & a_{in} &
\backslash
Cdots & & c_{ij}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
Vdots & & & &
\backslash
Vdots
\backslash
\backslash
& a_{n1} &
\backslash
Cdots & & & a_{nn}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
CodeAfter
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
node [highlight = (9-2) (9-6)] { } ;
\end_layout
\begin_layout Plain Layout
\backslash
node [highlight = (2-9) (6-9)] { } ;
\end_layout
\begin_layout Plain Layout
\backslash
draw [gray,shorten > = 1mm, shorten < = 1mm] (9-4.north) to [bend left] (4-9.west)
;
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
end{NiceArray}
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\begin_layout Standard
矩阵的乘法满足下列运算规律 (假定运算都是可行的):
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(AB)C=A(BC)$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(A+B)C=AC+BC$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $C(A+B)=CA+CB$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $k(AB)=(kA)B=A(kB)$
\end_inset
.
\end_layout
\begin_layout Remark*
矩阵的乘法一般不满足交换律, 即
\begin_inset Formula $AB\neq BA$
\end_inset
;
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵乘法
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}-2 & 4\\
1 & -2
\end{bmatrix},B=\begin{bmatrix}2 & 4\\
-3 & -6
\end{bmatrix}$
\end_inset
, 则
\begin_inset Formula
\[
\begin{aligned}AB & =\begin{bmatrix}-2 & 4\\
1 & -2
\end{bmatrix}\begin{bmatrix}2 & 4\\
-3 & -6
\end{bmatrix}=\begin{bmatrix}-16 & -32\\
8 & 16
\end{bmatrix}\text{, }\\
BA & =\begin{bmatrix}2 & 4\\
-3 & -6
\end{bmatrix}\begin{bmatrix}-2 & 4\\
1 & -2
\end{bmatrix}=\begin{bmatrix}0 & 0\\
0 & 0
\end{bmatrix},
\end{aligned}
\]
\end_inset
于是
\begin_inset Formula $AB\neq BA;$
\end_inset
\begin_inset Formula $BA=O$
\end_inset
, 而
\begin_inset Formula $A\ne O$
\end_inset
,
\begin_inset Formula $B\ne O$
\end_inset
.
\end_layout
\begin_layout Standard
从上例还可看出:
\color red
两个非零矩阵相乘, 可能是零矩阵, 故不能从
\begin_inset Formula $AB=O$
\end_inset
必然推出
\begin_inset Formula $A=O$
\end_inset
\begin_inset Formula $B=O$
\end_inset
.
\end_layout
\begin_layout Standard
此外, 矩阵乘法一般也不满足消去律, 即不能从
\begin_inset Formula $AC=BC$
\end_inset
必然推出
\begin_inset Formula $A=B$
\end_inset
.
例如,
\end_layout
\begin_layout Example
\begin_inset Argument 1
status open
\begin_layout Plain Layout
矩阵乘法不满足消去率的反例
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{gathered}A=\begin{bmatrix}1 & 2\\
0 & 3
\end{bmatrix},\ B=\begin{bmatrix}1 & 0\\
0 & 4
\end{bmatrix},\ C=\begin{bmatrix}1 & 1\\
0 & 0
\end{bmatrix},\\
AC=\begin{bmatrix}1 & 2\\
0 & 3
\end{bmatrix}\begin{bmatrix}1 & 1\\
0 & 0
\end{bmatrix}=\begin{bmatrix}1 & 1\\
0 & 0
\end{bmatrix}=\begin{bmatrix}1 & 0\\
0 & 4
\end{bmatrix}\begin{bmatrix}1 & 1\\
0 & 0
\end{bmatrix}=BC,
\end{gathered}
\]
\end_inset
\begin_inset Formula $A\neq B$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
乘法可交换的矩阵乘积性质
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
如果两矩阵相乘, 有
\begin_inset Formula
\[
AB=BA
\]
\end_inset
则称矩阵
\begin_inset Formula $A$
\end_inset
与矩阵
\begin_inset Formula $B$
\end_inset
\series bold
可交换
\series default
.
简称
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $B$
\end_inset
\series bold
可换
\series default
.
\end_layout
\begin_layout Remark
对于单位矩阵
\begin_inset Formula $E$
\end_inset
, 容易证明
\begin_inset Formula
\[
E_{m}A_{m\times n}=A_{m\times n},\quad A_{m\times n}E_{n}=A_{m\times n}.
\]
\end_inset
\begin_inset Formula $m\ne n$
\end_inset
时, 我们不能说
\begin_inset Formula $A_{m\times n}$
\end_inset
\begin_inset Formula $E_{m}$
\end_inset
可交换, 或
\begin_inset Formula $A_{m\times n}$
\end_inset
\begin_inset Formula $E_{n}$
\end_inset
可交换.
特别地, 当
\begin_inset Formula $m=n$
\end_inset
时, 有
\begin_inset Formula
\[
EA=AE=A.
\]
\end_inset
此时称
\begin_inset Formula $n$
\end_inset
阶方阵
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $n$
\end_inset
阶单位阵
\begin_inset Formula $E_{n}$
\end_inset
可交换, 且乘积
\begin_inset Formula $AE$
\end_inset
,
\begin_inset Formula $EA$
\end_inset
等于矩阵
\begin_inset Formula $A$
\end_inset
自身.
\end_layout
\begin_layout Standard
可见单位矩阵
\begin_inset Formula $E$
\end_inset
在矩阵乘法中的作用类似于数
\begin_inset Formula $1$
\end_inset
.
\end_layout
\begin_layout Standard
更进一步我们有
\end_layout
\begin_layout Proposition
\begin_inset Formula $B$
\end_inset
是一个
\begin_inset Formula $n$
\end_inset
阶矩阵, 则
\begin_inset Formula $B$
\end_inset
是一个数量矩阵的充分必要条件是
\begin_inset Formula $B$
\end_inset
与任何
\begin_inset Formula $n$
\end_inset
阶矩阵
\begin_inset Formula $A$
\end_inset
可换.
\end_layout
\begin_layout Solution*
\begin_inset Argument 1
status open
\begin_layout Plain Layout
Hint
\end_layout
\end_inset
取矩阵
\begin_inset ERT
status open
\begin_layout Plain Layout
$A=
\backslash
begin{bNiceMatrix}[last-col,last-row]
\end_layout
\begin_layout Plain Layout
0&
\backslash
cdots&0&
\backslash
cdots&0&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
vdots&
\backslash
ddots&
\backslash
vdots&
\backslash
ddots&
\backslash
vdots&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&
\backslash
cdots&1&
\backslash
cdots&0&
\backslash
leftarrow p
\backslash
text{ 行}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
vdots&
\backslash
ddots&
\backslash
vdots&
\backslash
ddots&
\backslash
vdots&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&
\backslash
cdots&0&
\backslash
cdots&0&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&
\backslash
overset{
\backslash
uparrow}{q
\backslash
text{ 列}}&&&
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
$,
\end_layout
\end_inset
所以若矩阵
\begin_inset Formula $B=(b_{ij})_{n\times n}$
\end_inset
与矩阵
\begin_inset Formula $A$
\end_inset
交换, 则必然有
\begin_inset Formula
\[
b_{pp}=b_{qq},\ \begin{cases}
b_{pk}\equiv0, & k\ne p\\
b_{kq}\equiv0, & k\ne q
\end{cases}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Proposition
\begin_inset Formula $A,B$
\end_inset
均为
\begin_inset Formula $n$
\end_inset
阶矩阵, 则下列命题等价:
\end_layout
\begin_deeper
\begin_layout Enumerate
\begin_inset Formula $AB=BA$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(A+B)^{2}=A^{2}+2AB+B^{2}$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(A-B)^{2}=A^{2}-2AB+B^{2}$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $(A+B)(A-B)=(A-B)(A+B)=A^{2}-B^{2}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Proposition
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
乘法可交换的矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
证明: 如果
\begin_inset Formula $CA=AC$
\end_inset
,
\begin_inset Formula $CB=BC$
\end_inset
, 则有
\end_layout
\begin_layout Example
\begin_inset Formula
\[
(A+B)C=C(A+B);\quad(AB)C=C(AB).
\]
\end_inset
\end_layout
\begin_layout Proof
由于
\begin_inset Formula $CA=AC$
\end_inset
,
\begin_inset Formula $CB=BC$
\end_inset
, 所以
\begin_inset Formula
\[
(A+B)C=AC+BC=CA+CB=C(A+B);
\]
\end_inset
\begin_inset Formula
\[
(AB)C=A(BC)=A(CB)=(AC)B=(CA)B=C(AB).
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵乘法
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}2 & 3\\
1 & -2\\
3 & 1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}1 & -2 & -3\\
2 & -1 & 0
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $AB$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
AB & =\begin{bmatrix}2 & 3\\
1 & -2\\
3 & 1
\end{bmatrix}\begin{bmatrix}1 & -2 & -3\\
2 & -1 & 0
\end{bmatrix}\\
& =\begin{bmatrix}2\times1+3\times2 & 2\times(-2)+3\times(-1) & 2\times(-3)+3\times0\\
1\times1+(-2)\times2 & 1\times(-2)+(-2)\times(-1) & 1\times(-3)+(-2)\times0\\
3\times1+1\times2 & 3\times(-2)+1\times(-1) & 3\times(-3)+1\times0
\end{bmatrix}\\
& =\begin{bmatrix}8 & -7 & -6\\
-3 & 0 & -3\\
5 & -7 & -9
\end{bmatrix}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
就此例顺便求一下
\begin_inset Formula $BA$
\end_inset
.
\begin_inset Formula
\begin{align*}
BA & =\begin{bmatrix}1 & -2 & -3\\
2 & -1 & 0
\end{bmatrix}\begin{bmatrix}2 & 3\\
1 & -2\\
3 & 1
\end{bmatrix}\\
& =\begin{bmatrix}1\times2+(-2)\times1+(-3)\times3 & 1\times3+(-2)\times(-2)+(-3)\times1\\
2\times2+(-1)\times1+0\times3 & 2\times3+(-1)\times(-2)+0\times1
\end{bmatrix}\\
& =\begin{bmatrix}-9 & 4\\
3 & 8
\end{bmatrix}.
\end{align*}
\end_inset
显然
\begin_inset Formula $AB\neq BA$
\end_inset
.
\end_layout
\begin_layout Example
\begin_inset Formula $A=(1,0,4)$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}1\\
1\\
0
\end{bmatrix}$
\end_inset
.
\begin_inset Formula $A$
\end_inset
是一个
\begin_inset Formula $1\times3$
\end_inset
矩阵,
\begin_inset Formula $B$
\end_inset
\begin_inset Formula $3\times1$
\end_inset
矩阵, 因此
\begin_inset Formula $AB$
\end_inset
有意义,
\begin_inset Formula $BA$
\end_inset
也有意义; 但
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\begin_inset Formula
\begin{align*}
AB & =(1,0,4)\begin{bmatrix}1\\
1\\
0
\end{bmatrix}=1\times1+0\times1+4\times0=1,\\
BA & =\begin{bmatrix}1\\
1\\
0
\end{bmatrix}(1,0,4)=\begin{bmatrix}1\times1 & 1\times0 & 1\times4\\
1\times1 & 1\times0 & 1\times4\\
0\times1 & 0\times0 & 0\times4
\end{bmatrix}=\begin{bmatrix}1 & 0 & 4\\
1 & 0 & 4\\
0 & 0 & 0
\end{bmatrix}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}a_{1}\\
& a_{2}\\
& & \ddots\\
& & & a_{n}
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}b_{1}\\
& b_{2}\\
& & \ddots\\
& & & b_{n}
\end{bmatrix}$
\end_inset
.
(这种记法表示主对角线以外没有注明的元素均为零), 则
\end_layout
\begin_layout Example
(1)
\begin_inset Formula $k\begin{bmatrix}a_{1}\\
& a_{2}\\
& & \ddots\\
& & & a_{n}
\end{bmatrix}=\begin{bmatrix}ka_{1}\\
& ka_{2}\\
& & \ddots\\
& & & ka_{n}
\end{bmatrix}$
\end_inset
;
\end_layout
\begin_layout Example
(2)
\begin_inset Formula $\begin{bmatrix}a_{1}\\
& a_{2}\\
& & \ddots\\
& & & a_{n}
\end{bmatrix}+\begin{bmatrix}b_{1}\\
& b_{2}\\
& & \ddots\\
& & & b_{n}
\end{bmatrix}=\begin{bmatrix}a_{1}+b_{1}\\
& a_{2}+b_{2}\\
\\
& & & a_{n}+b_{n}
\end{bmatrix}$
\end_inset
;
\end_layout
\begin_layout Example
(3)
\begin_inset Formula $\begin{bmatrix}a_{1}\\
& a_{2}\\
& & \ddots\\
& & & a_{n}
\end{bmatrix}\begin{bmatrix}b_{1}\\
& b_{2}\\
& & \ddots\\
& & & b_{n}
\end{bmatrix}=\begin{bmatrix}a_{1}b_{1}\\
& a_{2}b_{2}\\
& & \ddots\\
& & & a_{n}b_{n}
\end{bmatrix};$
\end_inset
\end_layout
\begin_layout Example
可见, 如果
\begin_inset Formula $A,B$
\end_inset
\series bold
同阶对角矩阵
\series default
, 则
\begin_inset Formula $kA$
\end_inset
,
\begin_inset Formula $A+B$
\end_inset
,
\begin_inset Formula $A\times B$
\end_inset
仍为
\series bold
同阶对角矩阵
\series default
.
\end_layout
\begin_layout Example
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
乘法可交换的矩阵 (中心化子)
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
求与矩阵
\begin_inset Formula $A=\begin{bmatrix}0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0
\end{bmatrix}$
\end_inset
可交换的一切矩阵.
\end_layout
\begin_layout Solution*
设与
\begin_inset Formula $A$
\end_inset
可交换的矩阵为
\begin_inset Formula $B=\begin{bmatrix}a & b & c & d\\
a_{1} & b_{1} & c_{1} & d_{1}\\
a_{2} & b_{2} & c_{2} & d_{2}\\
a_{3} & b_{3} & c_{3} & d_{3}
\end{bmatrix}$
\end_inset
, 则
\begin_inset Formula
\[
AB=\begin{bmatrix}0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0
\end{bmatrix}\begin{bmatrix}a & b & c & d\\
a_{1} & b_{1} & c_{1} & d_{1}\\
a_{2} & b_{2} & c_{2} & d_{2}\\
a_{3} & b_{3} & c_{3} & d_{3}
\end{bmatrix}=\begin{bmatrix}a_{1} & b_{1} & c_{1} & d_{1}\\
a_{2} & b_{2} & c_{2} & d_{2}\\
a_{3} & b_{3} & c_{3} & d_{3}\\
0 & 0 & 0 & 0
\end{bmatrix};
\]
\end_inset
\begin_inset Formula
\[
BA=\begin{bmatrix}a & b & c & d\\
a_{1} & b_{1} & c_{1} & d_{1}\\
a_{2} & b_{2} & c_{2} & d_{2}\\
a_{3} & b_{3} & c_{3} & d_{3}
\end{bmatrix}\begin{bmatrix}0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0
\end{bmatrix}=\begin{bmatrix}0 & a & b & c\\
0 & a_{1} & b_{1} & c_{1}\\
0 & a_{2} & b_{2} & c_{2}\\
0 & a_{3} & b_{3} & c_{3}
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
AB=BA & \Longrightarrow a_{1}=0,\ b_{1}=a,\ c_{1}=b,\ d_{1}=c,\\
& \qquad a_{2}=0,\ b_{2}=a_{1}=0,\ c_{2}=b_{1}=a,\ d_{2}=c_{1}=b,\\
& \qquad a_{3}=0,\ b_{3}=a_{2}=0,\ c_{3}=b_{2}=0,\ d_{3}=c_{2}=a.
\end{align*}
\end_inset
于是可得
\begin_inset Formula $B=\begin{bmatrix}a & b & c & d\\
0 & a & b & c\\
0 & 0 & a & b\\
0 & 0 & 0 & a
\end{bmatrix}$
\end_inset
, 其中
\begin_inset Formula $a,b,c$
\end_inset
为任意实数.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵乘法定义的来源
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
关于矩阵乘法的定义的来源, 一种解释是源于变量替换, 对于从
\begin_inset Formula $x=(x_{1},x_{2},\cdots,x_{n})$
\end_inset
\begin_inset Formula $y=(y_{1},y_{2},\cdots,y_{m})$
\end_inset
的变量替换
\begin_inset Formula
\begin{equation}
\begin{cases}
y_{1}=b_{11}x_{1}+b_{12}x_{2}+\cdots+b_{1n}x_{n},\\
y_{2}=b_{21}x_{1}+b_{22}x_{2}+\cdots+b_{2n}x_{n},\\
\vdots\\
y_{m}=b_{m1}x_{1}+b_{m2}x_{2}+\cdots+b_{mn}x_{n},
\end{cases}\Longleftrightarrow y_{k}=\sum_{j=1}^{n}b_{kj}x_{j}.\label{eq:x2y}
\end{equation}
\end_inset
一般简写为
\begin_inset Formula $y=Bx$
\end_inset
.
而从
\begin_inset Formula $y$
\end_inset
\begin_inset Formula $z=(z_{1},z_{2},\cdots,z_{t})$
\end_inset
的变量替换
\begin_inset Formula
\begin{equation}
\begin{cases}
z_{1}=a_{11}y_{1}+a_{12}y_{2}+\cdots+a_{1m}y_{m},\\
z_{2}=a_{21}y_{1}+a_{22}y_{2}+\cdots+a_{2m}y_{m},\\
\vdots\\
z_{t}=a_{t1}y_{1}+a_{t2}y_{2}+\cdots+a_{tm}y_{m},
\end{cases}\Longleftrightarrow z_{i}=\sum_{k=1}^{m}a_{ik}y_{k}.\label{eq:y2z}
\end{equation}
\end_inset
一般简写为
\begin_inset Formula $z=Ay$
\end_inset
, 于是从变量
\begin_inset Formula $x$
\end_inset
直接变换到
\begin_inset Formula $z$
\end_inset
的变量替换为
\begin_inset Formula
\[
z=Ay=A(Bx).
\]
\end_inset
\end_layout
\begin_layout Standard
为此希望记直接从
\begin_inset Formula $x$
\end_inset
\begin_inset Formula $z$
\end_inset
的变换为
\begin_inset Formula $z=Cx\coloneqq(AB)\cdot x$
\end_inset
, 也即
\begin_inset Formula
\[
\begin{cases}
z_{1}=c_{11}x_{1}+c_{12}x_{2}+\cdots+c_{1n}x_{n},\\
z_{2}=c_{21}x_{1}+c_{22}x_{2}+\cdots+c_{2n}x_{n},\\
\vdots\\
z_{t}=c_{t1}x_{1}+c_{t2}x_{2}+\cdots+c_{tn}x_{n},
\end{cases}\Longleftrightarrow z_{i}=\sum_{j=1}^{n}c_{ij}x_{j}.
\]
\end_inset
为了得到
\begin_inset Formula $c_{ij}$
\end_inset
的具体表达式, 这相当于直接将 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:x2y"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 代入 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:y2z"
plural "false"
caps "false"
noprefix "false"
\end_inset
), 所以有
\begin_inset Formula
\[
z_{i}=\sum_{k=1}^{m}a_{ik}y_{k}=\sum_{k=1}^{m}a_{ik}\sum_{j=1}^{n}b_{kj}x_{j}=\sum_{j=1}^{n}\boxed{{\color{red}\sum_{k=1}^{m}a_{ik}b_{kj}}}x_{j}=\sum_{j=1}^{n}\boxed{{\color{red}c_{ij}}}x_{j}.
\]
\end_inset
因此为了能使变量替换与通常实数时的情况一致, 矩阵乘法中的元素
\begin_inset Formula $c_{ij}$
\end_inset
是由矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $i$
\end_inset
行元素与矩阵
\begin_inset Formula $B$
\end_inset
的第
\begin_inset Formula $j$
\end_inset
列元素对应相乘的累和.
\begin_inset Foot
status open
\begin_layout Plain Layout
矩阵乘法的定义归功于Cayley, 参考: 莫里斯·克莱因,《古今数学思想》, vol.
3, p.207-216.
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵乘法
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
某地区有四个工厂 I、II、III、IV, 生产甲、乙、丙三种产品, 矩阵
\begin_inset Formula $A$
\end_inset
表示一年中各工厂生产各种产品的数量, 矩阵
\begin_inset Formula $B$
\end_inset
表示各种产品的单位价格 (元) 及单位利润 (元), 矩阵
\begin_inset Formula $C$
\end_inset
表示各工厂的总收入及总利润.
\end_layout
\begin_layout Example
\begin_inset ERT
status open
\begin_layout Plain Layout
$$A=
\backslash
begin{bNiceArray}{ccc}[last-row,last-col]
\end_layout
\begin_layout Plain Layout
a_{11} & a_{12} & a_{13} &
\backslash
text{I}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
a_{21} & a_{22} & a_{23} &
\backslash
text{II}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
a_{31} & a_{32} & a_{33} &
\backslash
text{III}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
a_{41} & a_{42} & a_{43} &
\backslash
text{IV}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
text{甲} &
\backslash
text{乙} &
\backslash
text{丙} &
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceArray}
\backslash
\backslash
;,
\backslash
\end_layout
\begin_layout Plain Layout
B=
\backslash
begin{bNiceArray}{cc}[last-row,last-col]
\end_layout
\begin_layout Plain Layout
b_{11} & b_{12} &
\backslash
text{甲}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
b_{21} & b_{22} &
\backslash
text{乙}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
b_{31} & b_{32} &
\backslash
text{丙}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
text{单位价格} &
\backslash
text{单位利润} &
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceArray}
\backslash
\backslash
;,
\backslash
\end_layout
\begin_layout Plain Layout
C=
\backslash
begin{bNiceArray}{cc}[last-row,last-col]
\end_layout
\begin_layout Plain Layout
c_{11} & c_{12} &
\backslash
text{I}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
c_{21} & c_{22} &
\backslash
text{II}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
c_{31} & c_{32} &
\backslash
text{III}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
c_{41} & c_{42} &
\backslash
text{IV}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
text{总收入} &
\backslash
text{总利润} &
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceArray}.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
其中,
\begin_inset Formula $a_{ik}$
\end_inset
(
\begin_inset Formula $i=1,2,3,4$
\end_inset
;
\begin_inset Formula $k=1,2,3$
\end_inset
) 是第
\begin_inset Formula $i$
\end_inset
个工厂生产第
\begin_inset Formula $k$
\end_inset
种产品的数量,
\begin_inset Formula $b_{k1}$
\end_inset
\begin_inset Formula $b_{k2}$
\end_inset
(
\begin_inset Formula $k=1,2,3$
\end_inset
) 分别是第
\begin_inset Formula $k$
\end_inset
种产品的单位价格及单位利润,
\begin_inset Formula $c_{i1}$
\end_inset
\begin_inset Formula $c_{i2}$
\end_inset
(
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $i=1,2,3,4$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\strikeout default
\xout default
\uuline default
\uwave default
\noun default
\color inherit
) 分别是第
\begin_inset Formula $i$
\end_inset
个工厂生产三种产品的总收入及总利润.
则矩阵
\begin_inset Formula $A,B,C$
\end_inset
的元素之间有下列关系:
\end_layout
\begin_layout Example
\begin_inset ERT
status open
\begin_layout Plain Layout
$$
\backslash
begin{bmatrix}
\end_layout
\begin_layout Plain Layout
a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31} & a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31} & a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
a_{31}b_{11}+a_{32}b_{21}+a_{33}b_{31} & a_{31}b_{12}+a_{32}b_{22}+a_{33}b_{32}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
a_{41}b_{11}+a_{42}b_{21}+a_{43}b_{31} & a_{41}b_{12}+a_{42}b_{22}+a_{43}b_{32}
\end_layout
\begin_layout Plain Layout
\backslash
end{bmatrix}=
\backslash
begin{bNiceArray}{cc}[last-row]
\end_layout
\begin_layout Plain Layout
c_{11} & c_{12}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
c_{21} & c_{22}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
c_{31} & c_{32}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
c_{41} & c_{42}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
text{总收入} &
\backslash
text{总利润}
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceArray}.$$
\end_layout
\end_inset
其中
\begin_inset Formula $c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+a_{i3}b_{3j}$
\end_inset
(
\begin_inset Formula $i=1,2,3,4$
\end_inset
;
\begin_inset Formula $j=1,2$
\end_inset
), 即
\begin_inset Formula $C=AB$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Subsection
线性方程组的矩阵表示
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性方程组的矩阵表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
设有线性方程组
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\left\{ \begin{array}{l}
a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=b_{1}\\
a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=b_{2}\\
\cdots\cdots\cdots\cdots\cdots\cdots\cdots\\
a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=b_{m}
\end{array}\right.\label{eq:2.3-1}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
若记
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix},\quad x=\begin{bmatrix}x_{1}\\
x_{2}\\
\vdots\\
x_{n}
\end{bmatrix},\quad b=\begin{bmatrix}b_{1}\\
b_{2}\\
\vdots\\
b_{m}
\end{bmatrix},
\]
\end_inset
则利用矩阵的乘法, 线性方程组 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 可表示为矩阵形式:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
Ax=b.\label{eq:2.3-2}
\end{equation}
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
其中矩阵
\begin_inset Formula $A$
\end_inset
称为线性方程组 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的
\series bold
系数矩阵
\series default
.
方程 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 又称为
\series bold
矩阵方程
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性方程组的矩阵表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
如果
\begin_inset Formula $x_{j}=c_{j}$
\end_inset
, (
\begin_inset Formula $j=1,2,\cdots,n$
\end_inset
) 是方程组 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的解, 记列矩阵
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\begin_inset Formula
\[
c=\begin{bmatrix}c_{1}\\
c_{2}\\
\vdots\\
c_{n}
\end{bmatrix},
\]
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $Ac=b$
\end_inset
.
这时也称
\begin_inset Formula $c$
\end_inset
是矩阵方程 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的解;
\end_layout
\begin_layout Standard
反之, 如果列矩阵
\begin_inset Formula $c$
\end_inset
是矩阵方程 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的解, 即有矩阵等式
\begin_inset Formula $Ac=b$
\end_inset
成立, 则
\begin_inset Formula $x=c$
\end_inset
, 即
\begin_inset Formula $x_{j}=c_{j}$
\end_inset
, (
\begin_inset Formula $j=1,2,\cdots,n$
\end_inset
) 也是线性方程组 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的解.
\end_layout
\begin_layout Standard
这样, 对线性方程组 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的讨论便等价于对矩阵方程 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.3-2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的讨论.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
齐次线性方程组的矩阵表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
特别地, 齐次线性方程组可以表示为
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
Ax=O.
\]
\end_inset
\end_layout
\begin_layout Standard
将线性方程组写成矩阵方程的形式, 不仅
\series bold
书写方便
\series default
, 而且可以把线性方程组的理论与矩阵理论联系起来, 这给线性方程组的讨论带来很大的便利.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵方程的例子
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
解矩阵方程
\begin_inset Formula $\begin{bmatrix}2 & 1\\
1 & 2
\end{bmatrix}X=\begin{bmatrix}1 & 2\\
-1 & 4
\end{bmatrix}$
\end_inset
, 其中
\begin_inset Formula $X$
\end_inset
为二阶矩阵.
\end_layout
\begin_layout Solution*
\begin_inset Formula $X=\begin{bmatrix}x_{11} & x_{12}\\
x_{21} & x_{22}
\end{bmatrix}$
\end_inset
, 由题设, 有
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{bmatrix}2 & 1\\
1 & 2
\end{bmatrix}\begin{bmatrix}x_{11} & x_{12}\\
x_{21} & x_{22}
\end{bmatrix}=\begin{bmatrix}1 & 2\\
-1 & 4
\end{bmatrix},\quad\begin{bmatrix}2x_{11}+x_{21} & 2x_{12}+x_{22}\\
x_{11}+2x_{21} & x_{12}+2x_{22}
\end{bmatrix}=\begin{bmatrix}1 & 2\\
-1 & 4
\end{bmatrix}.
\]
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{cases}
2x_{11}+x_{21}=1 & (1)\\
x_{11}+2x_{21}=-1 & (2)
\end{cases},\qquad\begin{cases}
2x_{12}+x_{22}=2 & (3)\\
x_{12}+2x_{22}=4 & (4)
\end{cases}.
\]
\end_inset
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
分别解 (1), (2) 和 (3), (4) 两个方程组得
\begin_inset Formula
\[
x_{11}=1,\quad x_{12}=0,\quad x_{21}=-1,\quad x_{22}=2\Longrightarrow X=\begin{bmatrix}1 & 0\\
-1 & 2
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Subsection
线性变换的概念
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性变换的概念
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
变量
\begin_inset Formula $x_{1},x_{2},\cdots,x_{n}$
\end_inset
与变量
\begin_inset Formula $y_{1},y_{2},\cdots,y_{m}$
\end_inset
之间的关系式:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\begin{cases}
y_{1}=a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\\
y_{2}=a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\\
\cdots\cdots\cdots\cdots\cdots\cdots\\
y_{m}=a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}.
\end{cases}\label{eq:2.4-2}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
称为从变量
\begin_inset Formula $x_{1},x_{2},\cdots,x_{n}$
\end_inset
到变量
\begin_inset Formula $y_{1},y_{2},\cdots,y_{m}$
\end_inset
\series bold
线性变换
\series default
.
其中
\begin_inset Formula $a_{ij}$
\end_inset
(
\begin_inset Formula $i=1,2,\cdots,m;\ j=1,2,\cdots,n$
\end_inset
) 为常数.
线性变换 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.4-2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的系数
\begin_inset Formula $a_{ij}$
\end_inset
构成矩阵
\begin_inset Formula $A=\left(a_{ij}\right)_{m\times n}$
\end_inset
, 称其为线性变换 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.4-2"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 的
\series bold
系数矩阵
\series default
.
\end_layout
\begin_layout Standard
易见
\end_layout
\begin_layout Standard
\begin_inset Box Boxed
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
thickness "0.4pt"
separation "3pt"
shadowsize "4pt"
framecolor "black"
backgroundcolor "none"
status open
\begin_layout Plain Layout
线性变换与其系数矩阵之间存在一一对应关系.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
因而可利用矩阵来研究线性变换, 亦可利用线性变换来研究矩阵.
\end_layout
\begin_layout Standard
线性变换
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\begin{cases}
y_{1}=x_{1}\\
y_{2}=x_{2}\\
\vdots\\
y_{n}=x_{n}
\end{cases}
\]
\end_inset
\end_layout
\begin_layout Standard
称为
\series bold
恒等变换
\series default
, 其系数矩阵就是
\series bold
单位矩阵
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性变换的几何意义
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设有线性变换
\begin_inset Formula $y=Ax$
\end_inset
, 其中
\begin_inset Formula $A=\begin{bmatrix}1 & 2\\
0 & 1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $x=\begin{bmatrix}1\\
1
\end{bmatrix}$
\end_inset
, 试求出向量
\begin_inset Formula $y$
\end_inset
, 并指出该变换的几何意义.
\end_layout
\begin_layout Solution*
\begin_inset Formula $y=Ax=\begin{bmatrix}1 & 2\\
0 & 1
\end{bmatrix}\begin{bmatrix}1\\
1
\end{bmatrix}=\begin{bmatrix}3\\
1
\end{bmatrix}$
\end_inset
.
其几何意义是: 线性变换
\begin_inset Formula $y=Ax$
\end_inset
将平面
\begin_inset Formula $x_{1}Ox_{2}$
\end_inset
上的向量
\begin_inset Formula $x=\begin{bmatrix}1\\
1
\end{bmatrix}$
\end_inset
变换为该平面上的另一向量
\begin_inset Formula $y=\begin{bmatrix}3\\
1
\end{bmatrix}$
\end_inset
, (见下图).
\end_layout
\begin_layout Solution*
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{center}
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}[remember picture]
\end_layout
\begin_layout Plain Layout
\backslash
draw[help lines] (0,0) grid (3,3);
\end_layout
\begin_layout Plain Layout
\backslash
draw[red,fill=red!20] (0,0)--(2,0)--(2,2)--(0,2)--(0,0);
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
filldraw [gray] (1.5,1.5) circle [radius=2pt]
\end_layout
\begin_layout Plain Layout
node[above] (n3) at (1.5,1.5) {$x$};
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
hspace{3mm}
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}[remember picture]
\end_layout
\begin_layout Plain Layout
\backslash
draw[help lines] (0,0) grid (7.5,3);
\end_layout
\begin_layout Plain Layout
\backslash
draw[gray,fill=gray!20] (0,0)--(2,0)--(2,2)--(0,2)--(0,0);
\end_layout
\begin_layout Plain Layout
\backslash
draw[red,fill=red!20,opacity=0.7] (0,0)--(2,0)--(6,2)--(4,2)--(0,0);
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
\backslash
filldraw [gray] (4.5,1.5) circle [radius=2pt]
\end_layout
\begin_layout Plain Layout
node[above] (n2) at (4.5,1.5) {$Ax$};
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}[remember picture,overlay]
\end_layout
\begin_layout Plain Layout
\backslash
draw[overlay,->,very thick,yshift=5mm] (n3) to[bend left] (n2);
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
end{center}
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性变换的几何意义
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 0
\end{bmatrix}$
\end_inset
, 为三维空间一向量, 试讨论矩阵变换
\begin_inset Formula $x\rightarrow Ax$
\end_inset
的几何意义.
\end_layout
\begin_layout Solution*
如图所示, 设
\begin_inset Formula $x=\overrightarrow{OP}=\begin{bmatrix}x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}$
\end_inset
, 则
\begin_inset Formula
\[
\begin{bmatrix}x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}\rightarrow\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 0
\end{bmatrix}\begin{bmatrix}x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}=\boxed{{\color{red}\begin{bmatrix}1\\
0\\
0
\end{bmatrix}x_{1}+\begin{bmatrix}0\\
1\\
0
\end{bmatrix}x_{2}+\begin{bmatrix}0\\
0\\
0
\end{bmatrix}x_{3}}}=\begin{bmatrix}x_{1}\\
x_{2}\\
0
\end{bmatrix},
\]
\end_inset
从几何上看, 在变换
\begin_inset Formula $x\rightarrow Ax$
\end_inset
下, 空间中的点
\begin_inset Formula $P\left(x_{1},x_{2},x_{3}\right)$
\end_inset
被投影到了
\begin_inset Formula $x_{1}Ox_{2}$
\end_inset
平面上.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的转置
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
把矩阵
\begin_inset Formula $A$
\end_inset
的行换成同序数的列得到的新矩阵, 称为
\begin_inset Formula $A$
\end_inset
\series bold
转置矩阵
\series default
, 记作
\begin_inset Formula $A^{T}$
\end_inset
(或
\begin_inset Formula $A'$
\end_inset
).
即若
\begin_inset Formula
\[
A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix},
\]
\end_inset
\end_layout
\begin_layout Definition
\end_layout
\begin_layout Definition
\begin_inset Formula
\[
A^{T}=\begin{bmatrix}a_{11} & a_{21} & \cdots & a_{m1}\\
a_{12} & a_{22} & \cdots & a_{m2}\\
\vdots & \vdots & \ddots & \vdots\\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Example
(1) 设
\begin_inset Formula $A=\begin{bmatrix}1 & 2 & -1 & 0\\
-1 & 0 & 1 & 4\\
2 & 5 & -3 & 1
\end{bmatrix}$
\end_inset
, 则
\begin_inset Formula $A^{T}=\begin{bmatrix}1 & -1 & 2\\
2 & 0 & 5\\
-1 & 1 & -3\\
0 & 4 & 1
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Example
(2) 设
\begin_inset Formula $A=(1,2,3,-1)$
\end_inset
, 则
\begin_inset Formula $A^{T}=\begin{bmatrix}1\\
2\\
3\\
-1
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的转置
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
矩阵的转置满足以下运算规律 (假设运算都是可行的):
\end_layout
\begin_layout Standard
(1)
\begin_inset Formula $\left(A^{T}\right)^{T}=A$
\end_inset
;
\end_layout
\begin_layout Standard
(2)
\begin_inset Formula $(A+B)^{T}=A^{T}+B^{T}$
\end_inset
;
\end_layout
\begin_layout Standard
(3)
\begin_inset Formula $(kA)^{T}=kA^{T}$
\end_inset
;
\end_layout
\begin_layout Standard
(4)
\begin_inset Formula $(AB)^{T}=B^{T}A^{T}$
\end_inset
.
\end_layout
\begin_layout Example
已知
\begin_inset Formula $A=\begin{bmatrix}2 & 0 & -1\\
1 & 3 & 2
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}1 & 7 & -1\\
4 & 2 & 3\\
2 & 0 & 1
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $(AB)^{T}$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula $AB=\begin{bmatrix}2 & 0 & -1\\
1 & 3 & 2
\end{bmatrix}\begin{bmatrix}1 & 7 & -1\\
4 & 2 & 3\\
2 & 0 & 1
\end{bmatrix}=\begin{bmatrix}0 & 14 & -3\\
17 & 13 & 10
\end{bmatrix}$
\end_inset
, 所以
\begin_inset Formula
\[
(AB)^{T}=\begin{bmatrix}0 & 17\\
14 & 13\\
-3 & 10
\end{bmatrix}.
\]
\end_inset
另一方面, 也可以按下式计算
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
(AB)^{T}=B^{T}A^{T}=\begin{bmatrix}1 & 4 & 2\\
7 & 2 & 0\\
-1 & 3 & 1
\end{bmatrix}\begin{bmatrix}2 & 1\\
0 & 3\\
-1 & 2
\end{bmatrix}=\begin{bmatrix}0 & 17\\
14 & 13\\
-3 & 10
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
方阵的幂
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
设方阵
\begin_inset Formula $A=\left(a_{ij}\right)_{n\times n}$
\end_inset
, 规定
\begin_inset Formula
\[
A^{0}=E,\quad A^{k}=\underbrace{A\cdot A\cdot\cdots\cdot A}_{k\text{个}A},\quad k\text{ 为自然数. }
\]
\end_inset
\begin_inset Formula $A^{k}$
\end_inset
称为
\series bold
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $k$
\end_inset
次幂
\series default
.
\end_layout
\begin_layout Standard
方阵的幂满足以下运算规律 (假设运算都是可行的):
\end_layout
\begin_layout Standard
(1).
\begin_inset Formula $A^{m}A^{n}=A^{m+n}$
\end_inset
, (
\begin_inset Formula $m,n$
\end_inset
为非负整数);
\end_layout
\begin_layout Standard
(2).
\begin_inset Formula $\left(A^{m}\right)^{n}=A^{mn}$
\end_inset
.
\end_layout
\begin_layout Remark*
一般地,
\begin_inset Formula $(AB)^{m}\neq A^{m}B^{m}$
\end_inset
,
\begin_inset Formula $m$
\end_inset
为自然数.
\end_layout
\begin_layout Proposition
\begin_inset Formula $A,B$
\end_inset
均为
\begin_inset Formula $n$
\end_inset
阶矩阵, 且有
\begin_inset Formula $AB=BA$
\end_inset
, 则
\begin_inset Formula $(AB)^{m}=A^{m}B^{m}$
\end_inset
, 其中
\begin_inset Formula $m$
\end_inset
为自然数, 反之不成立.
\end_layout
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}\lambda & 1 & 0\\
0 & \lambda & 1\\
0 & 0 & \lambda
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $A^{3}$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
A^{2}=\begin{bmatrix}\lambda & 1 & 0\\
0 & \lambda & 1\\
0 & 0 & \lambda
\end{bmatrix}\begin{bmatrix}\lambda & 1 & 0\\
0 & \lambda & 1\\
0 & 0 & \lambda
\end{bmatrix}=\begin{bmatrix}\lambda^{2} & 2\lambda & 1\\
0 & \lambda^{2} & 2\lambda\\
0 & 0 & \lambda^{2}
\end{bmatrix},
\]
\end_inset
\begin_inset Formula
\[
A^{3}=A^{2}A=\begin{bmatrix}\lambda^{2} & 2\lambda & 1\\
0 & \lambda^{2} & 2\lambda\\
0 & 0 & \lambda^{2}
\end{bmatrix}\begin{bmatrix}\lambda & 1 & 0\\
0 & \lambda & 1\\
0 & 0 & \lambda
\end{bmatrix}=\begin{bmatrix}\lambda^{3} & 3\lambda^{2} & 3\lambda\\
0 & \lambda^{3} & 3\lambda^{2}\\
0 & 0 & \lambda^{3}
\end{bmatrix}.
\]
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
方阵的行列式
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
\begin_inset Formula $n$
\end_inset
阶方阵
\begin_inset Formula $A$
\end_inset
的元素所构成的行列式 (各元素的位置不变), 称为方阵
\begin_inset Formula $A$
\end_inset
的行列式, 记作
\begin_inset Formula $|A|$
\end_inset
\begin_inset Formula $\mathrm{det}A$
\end_inset
.
\end_layout
\begin_layout Remark*
方阵与行列式是两个不同的概念,
\begin_inset Formula $n$
\end_inset
阶方阵是
\begin_inset Formula $n^{2}$
\end_inset
个数按一定方式排成的数表, 而
\begin_inset Formula $n$
\end_inset
阶行列式则是这些数按一定的运算法则所确定的一个数值 (实数或复数).
\end_layout
\begin_layout Standard
方阵
\begin_inset Formula $A$
\end_inset
的行列式
\begin_inset Formula $|A|$
\end_inset
满足以下运算规律 (设
\begin_inset Formula $A,B$
\end_inset
\begin_inset Formula $n$
\end_inset
阶方阵,
\begin_inset Formula $k$
\end_inset
为常数):
\end_layout
\begin_layout Standard
(1)
\begin_inset Formula $\left|A^{T}\right|=|A|$
\end_inset
, (行列式性质1);
\end_layout
\begin_layout Standard
(2)
\begin_inset Formula $|kA|=k^{n}|A|$
\end_inset
;
\end_layout
\begin_layout Standard
(3)
\begin_inset Formula $|AB|=|A||B|$
\end_inset
.
进一步
\begin_inset Formula $|A||B|=|AB|=|B||A|$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
方阵的行列式
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}1 & 0 & -1\\
2 & 1 & 0\\
3 & 2 & -1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}-2 & 1 & 0\\
0 & 3 & 1\\
0 & 0 & 2
\end{bmatrix}$
\end_inset
, 则
\end_layout
\begin_layout Example
\begin_inset Formula
\[
AB=\begin{bmatrix}-2 & 1 & -2\\
-4 & 5 & 1\\
-6 & 9 & 0
\end{bmatrix},\quad|AB|=\begin{vmatrix}-2 & 1 & -2\\
-4 & 5 & 1\\
-6 & 9 & 0
\end{vmatrix}=24.
\]
\end_inset
\end_layout
\begin_layout Example
\begin_inset Formula
\[
|A|=\begin{vmatrix}1 & 0 & -1\\
2 & 1 & 0\\
3 & 2 & -1
\end{vmatrix}=-2,\quad|B|=\begin{vmatrix}-2 & 1 & 0\\
0 & 3 & 1\\
0 & 0 & 2
\end{vmatrix}=-12\text{, }
\]
\end_inset
因此
\begin_inset Formula $|AB|=24=(-2)(-12)=|A||B|$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
对称矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $n$
\end_inset
阶方阵, 如果
\begin_inset Formula $A^{T}=A$
\end_inset
, 即
\begin_inset Formula
\[
a_{ij}=a_{ji},\quad(i,j=1,2,\cdots,n),
\]
\end_inset
则称
\begin_inset Formula $A$
\end_inset
\series bold
对称矩阵
\series default
.
\end_layout
\begin_layout Standard
显然, 对称矩阵
\begin_inset Formula $A$
\end_inset
的元素关于主对角线对称.
例如
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\begin{bmatrix}0 & -1\\
-1 & 0
\end{bmatrix},\begin{bmatrix}8 & 6 & 1\\
6 & 9 & 0\\
1 & 0 & 5
\end{bmatrix}
\]
\end_inset
\end_layout
\begin_layout Standard
均为对称矩阵.
\end_layout
\begin_layout Standard
如果
\begin_inset Formula $A^{T}=-A$
\end_inset
, 则称
\begin_inset Formula $A$
\end_inset
\series bold
反对称矩阵
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
对称阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设列矩阵
\begin_inset Formula $X=\left(x_{1},x_{2},\cdots,x_{n}\right)^{T}$
\end_inset
满足
\begin_inset Formula $X^{T}X=1$
\end_inset
,
\begin_inset Formula $E$
\end_inset
\begin_inset Formula $n$
\end_inset
阶单位矩阵,
\begin_inset Formula $H=E-2XX^{T}$
\end_inset
, 证明
\begin_inset Formula $H$
\end_inset
是对称矩阵, 且
\begin_inset Formula $HH^{T}=E$
\end_inset
.
\end_layout
\begin_layout Proof
由于
\begin_inset Formula $H^{T}=\left(E-2XX^{T}\right)^{T}=E^{T}-2\left(XX^{T}\right)^{T}=E-2XX^{T}=H$
\end_inset
, 所以
\begin_inset Formula $H$
\end_inset
是对称矩阵.
\begin_inset Formula
\[
\begin{aligned}HH^{T} & =H^{2}=\left(E-2XX^{T}\right)^{2}\\
& =E-4XX^{T}+4\left(XX^{T}\right)\left(XX^{T}\right)\\
& =E-4XX^{T}+4X\left(X^{T}X\right)X^{T}\\
& =E-4XX^{T}+4XX^{T}=E.
\end{aligned}
\]
\end_inset
\end_layout
\begin_layout Standard
由此可知: 矩阵方程
\begin_inset Formula $X^{2}=E$
\end_inset
有无穷多解, 称满足矩阵方程
\begin_inset Formula $X^{2}=E$
\end_inset
的矩阵为幂等矩阵.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
反对称阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $B$
\end_inset
是两个
\begin_inset Formula $n$
\end_inset
阶反对称矩阵, 证明: 当且仅当
\begin_inset Formula $AB=-BA$
\end_inset
时,
\begin_inset Formula $AB$
\end_inset
是反对称矩阵.
\end_layout
\begin_layout Solution*
由于
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $B$
\end_inset
是反对称矩阵
\begin_inset Formula $\Longrightarrow A=-A^{T}$
\end_inset
,
\begin_inset Formula $B=-B^{T}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $AB=-BA$
\end_inset
, 则
\begin_inset Formula $(AB)^{T}=B^{T}A^{T}=BA=-AB\Longrightarrow AB$
\end_inset
反对称.
\end_layout
\begin_layout Itemize
反之, 若
\begin_inset Formula $AB$
\end_inset
反对称, 即
\begin_inset Formula $(AB)^{T}=-AB\Longrightarrow AB=-(AB)^{T}=-B^{T}A^{T}=-(-B)(-A)=-BA$
\end_inset
.
\end_layout
\begin_layout Standard
证毕.
\end_layout
\end_deeper
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
共轭矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
\begin_inset Formula $A=\left(a_{ij}\right)$
\end_inset
为复 (数) 矩阵, 记
\begin_inset Formula
\[
\overline{A}=\left(\overline{a_{ij}}\right),
\]
\end_inset
其中
\begin_inset Formula $\overline{a_{ij}}$
\end_inset
表示
\begin_inset Formula $a_{ij}$
\end_inset
的共轭复数, 称
\begin_inset Formula $\overline{A}$
\end_inset
\begin_inset Formula $A$
\end_inset
\series bold
共轭矩阵
\series default
.
\end_layout
\begin_layout Standard
共轭矩阵满足以下运算规律 (设
\begin_inset Formula $A,B$
\end_inset
为复矩阵,
\begin_inset Formula $k$
\end_inset
为复数, 且运算都是可行的):
\end_layout
\begin_layout Standard
(1)
\begin_inset Formula $\overline{A+B}=\overline{A}+\overline{B}$
\end_inset
;
\end_layout
\begin_layout Standard
(2)
\begin_inset Formula $\overline{\lambda A}=\overline{\lambda A}$
\end_inset
;
\end_layout
\begin_layout Standard
(3)
\begin_inset Formula $\overline{AB}=\overline{A}\overline{B}$
\end_inset
.
\end_layout
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}1+i & 0 & 1-\sqrt{2}i\\
2i & -1 & -4i\\
-4-i & \sqrt{3}i & i
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $i=\sqrt{-1}$
\end_inset
, 则
\begin_inset Formula $\overline{A}=\begin{bmatrix}1-i & 0 & 1+\sqrt{2}i\\
-2i & -1 & 4i\\
-4+i & -\sqrt{3}i & -i
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Subsection
作业
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
作业
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Problem
\begin_inset Formula $A=\left(a_{ij}\right)$
\end_inset
为三阶矩阵, 若已知
\begin_inset Formula $|A|=-2$
\end_inset
, 求
\begin_inset Formula $\left|\vphantom{\int}|A|\cdot A\right|$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula
\[
A=\begin{bmatrix}\lambda_{1}\\
& \ddots\\
& & \lambda_{n}
\end{bmatrix},
\]
\end_inset
\begin_inset Formula $B=\left(b_{ij}\right)$
\end_inset
, 求
\begin_inset Formula $AB$
\end_inset
,
\begin_inset Formula $BA$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula
\[
E_{23}=\begin{bmatrix}1\\
& & 1\\
& 1\\
& & & 1
\end{bmatrix},\ E_{2(\lambda)}=\begin{bmatrix}1\\
& \lambda\\
& & 1\\
& & & 1
\end{bmatrix},\ E_{24(k)}=\begin{bmatrix}1\\
& 1 & & k\\
& & 1\\
& & & 1
\end{bmatrix}.
\]
\end_inset
若记矩阵
\begin_inset Formula $A=\begin{bmatrix}a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Problem
(1).
试求
\begin_inset Formula $E_{23}A$
\end_inset
,
\begin_inset Formula $E_{2(\lambda)}A$
\end_inset
\begin_inset Formula $E_{24(k)}A$
\end_inset
并比较它们与矩阵
\begin_inset Formula $A$
\end_inset
的不同 (并写出不同点).
\end_layout
\begin_layout Problem
(2).
试求
\begin_inset Formula $AE_{23}$
\end_inset
,
\begin_inset Formula $AE_{2(\lambda)}$
\end_inset
\begin_inset Formula $AE_{24(k)}$
\end_inset
并比较它们与矩阵
\begin_inset Formula $A$
\end_inset
的不同 (并写出不同点).
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula $A=\begin{bmatrix}1 & 1 & 1\\
-1 & 1 & 1\\
1 & -1 & 1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}1 & 2 & 1\\
1 & 3 & -1\\
2 & 1 & 4
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Problem
(1).
计算
\begin_inset Formula $AB-2A$
\end_inset
,
\begin_inset Formula $AB-BA$
\end_inset
;
\end_layout
\begin_layout Problem
(2).
问:
\begin_inset Formula $(A+B)(A-B)$
\end_inset
是否等于
\begin_inset Formula $A^{2}-B^{2}$
\end_inset
?
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
计算方阵
\begin_inset Formula $A$
\end_inset
的矩阵多项式
\begin_inset Formula $f(A)$
\end_inset
, 其中
\end_layout
\begin_layout Problem
(1).
\begin_inset Formula $A=\begin{bmatrix}2 & -1\\
-3 & 3
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $f(x)=x^{2}-x-1$
\end_inset
;
\end_layout
\begin_layout Problem
(2).
\begin_inset Formula $A=\begin{bmatrix}2 & 1 & 1\\
3 & 1 & 2\\
1 & -1 & 0
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $f(x)=x^{2}-5x+3$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
举例说明下列命题是错误的:
\end_layout
\begin_layout Problem
(1).
如果
\begin_inset Formula $A^{2}=O$
\end_inset
, 则
\begin_inset Formula $A=O$
\end_inset
;
\end_layout
\begin_layout Problem
(2).
如果
\begin_inset Formula $A^{2}=A$
\end_inset
, 则
\begin_inset Formula $A=O$
\end_inset
或者
\begin_inset Formula $A=E$
\end_inset
;
\end_layout
\begin_layout Problem
(3).
如果
\begin_inset Formula $AX=AY$
\end_inset
\begin_inset Formula $A\neq O$
\end_inset
, 则
\begin_inset Formula $X=Y$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula $k$
\end_inset
为正整数, 计算:
\end_layout
\begin_layout Problem
(1).
\begin_inset Formula
\[
\begin{bmatrix}\cos\theta & \sin\theta\\
-\sin\theta & \cos\theta
\end{bmatrix}^{k};
\]
\end_inset
\end_layout
\begin_layout Problem
(2).
\begin_inset Formula
\[
\begin{bmatrix}1 & 0\\
\lambda & 1
\end{bmatrix}^{k};
\]
\end_inset
\end_layout
\begin_layout Problem
(3).
\begin_inset Formula
\[
\begin{bmatrix}\lambda & 1\\
& \lambda & 1\\
& & \lambda
\end{bmatrix}^{k}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
计算矩阵乘积
\begin_inset Formula $\begin{bmatrix}b_{1} & b_{2} & b_{3}\end{bmatrix}\begin{bmatrix}a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{bmatrix}\begin{bmatrix}b_{1}\\
b_{2}\\
b_{3}
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
(1).
证明两个上三角形方阵的积仍为上三角形 (
\begin_inset Formula $A=\left(a_{ij}\right)$
\end_inset
为上三角形是指当
\begin_inset Formula $i>j$
\end_inset
时,
\begin_inset Formula $a_{ij}=0$
\end_inset
).
\end_layout
\begin_layout Problem
(2).
证明两个下三角形方阵的积仍为下三角形 (若当
\begin_inset Formula $i<j$
\end_inset
\begin_inset Formula $a_{ij}=0$
\end_inset
, 则称
\begin_inset Formula $A$
\end_inset
为下三角形).
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
证明任一
\begin_inset Formula $n$
\end_inset
阶矩阵
\begin_inset Formula $A$
\end_inset
都可表示成对称阵与反对称阵之和.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Argument 1
status open
\begin_layout Plain Layout
***
\end_layout
\end_inset
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $n\times m$
\end_inset
矩阵,
\begin_inset Formula $B$
\end_inset
\begin_inset Formula $m\times n$
\end_inset
矩阵, 如果
\begin_inset Formula $E_{n}-AB$
\end_inset
可逆, 证明:
\begin_inset Formula $E_{m}-BA$
\end_inset
也可逆, 并求
\begin_inset Formula $\left(E_{m}-BA\right)^{-1}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\end_body
\end_document

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/larryleifeng-linear-algebra-lecture.git
git@api.gitlife.ru:oschina-mirror/larryleifeng-linear-algebra-lecture.git
oschina-mirror
larryleifeng-linear-algebra-lecture
larryleifeng-linear-algebra-lecture
master