1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/larryleifeng-linear-algebra-lecture

В этом репозитории не указан файл с открытой лицензией (LICENSE). При использовании обратитесь к конкретному описанию проекта и его зависимостям в коде.
Клонировать/Скачать
la002-5-ppt.lyx 61 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
larryeppes Отправлено 09.04.2024 18:19 34b71fa
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass beamer
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage[define-L-C-R]{nicematrix}
\usetheme[lw]{uantwerpen}
\useoutertheme[height=0pt,width=2cm,left]{sidebar}
\usecolortheme{rose,sidebartab}
\useinnertheme{circles}
\usefonttheme[only large]{structurebold}
\setbeamercolor{sidebar left}{bg=black!15}
\setbeamercolor{structure}{fg=blue}
\setbeamercolor{author}{parent=structure}
\setbeamerfont{title}{series=\normalfont,size=\LARGER}
\setbeamerfont{title in sidebar}{series=\bfseries}
\setbeamerfont{author in sidebar}{series=\bfseries}
\setbeamerfont*{item}{series=}
\setbeamerfont{frametitle}{size=}
\setbeamerfont{block title}{size=\scriptsize}
\setbeamerfont{block body example}{size=\small}
\setbeamerfont{block body}{size=\footnotesize}
\setbeamerfont{block body alerted}{size=\small}
\setbeamerfont{subtitle}{size=\normalsize,series=\normalfont}
\AtBeginDocument{
\renewcommand\logopos{111.png}
\renewcommand\logoneg{111.png}
\renewcommand\logomonowhite{111.png}
\renewcommand\iconfile{111.png}
}
\setbeamertemplate{theorems}[numbered]
\AtBeginSection[]
{
\begin{frame}{章节内容}
\transfade%淡入淡出效果
\begin{multicols}{2}
\tableofcontents[sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
\end{multicols}
\addtocounter{framenumber}{-1} %目录页不计算页码
\end{frame}
}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options aspectratio = 1610, 11pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
矩阵的初等变换
\end_layout
\begin_layout Subsection
矩阵的初等变换
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的初等变换
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
在计算行列式时, 利用行列式的性质可以将给定的行列时化为上 (下) 三角形行列式, 从而简化行列式的计算, 把行列式的某些性质引用到矩阵上, 会给我们研究矩阵带
来很大的方便, 这些性质反映到矩阵上就是矩阵的初等变换.
\end_layout
\begin_layout Definition
矩阵的下列三种变换称为
\series bold
矩阵的初等行变换
\series default
:
\end_layout
\begin_layout Definition
(1) 交换矩阵的两行 (交换
\begin_inset Formula $i,j$
\end_inset
两行, 记作
\begin_inset Formula $r_{i}\leftrightarrow r_{j}$
\end_inset
);
\end_layout
\begin_layout Definition
(2) 以一个非零的数
\begin_inset Formula $k$
\end_inset
乘矩阵的某一行 (第
\begin_inset Formula $i$
\end_inset
行乘数
\begin_inset Formula $k$
\end_inset
, 记作
\begin_inset Formula $r_{i}\times k$
\end_inset
);
\end_layout
\begin_layout Definition
(3) 把矩阵的某一行的
\begin_inset Formula $k$
\end_inset
倍加到另一行 (第
\begin_inset Formula $j$
\end_inset
行乘
\begin_inset Formula $k$
\end_inset
加到
\begin_inset Formula $i$
\end_inset
行, 记为
\begin_inset Formula $r_{i}+kr_{j}$
\end_inset
).
\end_layout
\begin_layout Definition
把定义中的 “行” 换成 “列”, 即得
\series bold
矩阵的初等列变换
\series default
的定义 (相应记号中把
\begin_inset Formula $r$
\end_inset
换成
\begin_inset Formula $c$
\end_inset
).
\end_layout
\begin_layout Definition
初等行变换与初等列变换统称为
\series bold
初等变换
\series default
.
\end_layout
\begin_layout Remark*
初等变换的逆变换仍是初等变换, 且变换类型相同.
\end_layout
\begin_layout Standard
例如, 变换
\begin_inset Formula $r_{i}\leftrightarrow r_{j}$
\end_inset
的逆变换即为其本身; 变换
\begin_inset Formula $r_{i}\times k$
\end_inset
的逆变换为
\begin_inset Formula $r_{i}\times1/k$
\end_inset
; 变换
\begin_inset Formula $r_{i}+kr_{j}$
\end_inset
的逆变换为
\begin_inset Formula $r_{i}+(-k)r_{j}$
\end_inset
\begin_inset Formula $r_{i}-kr_{j}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵之间的等价关系
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
若矩阵
\begin_inset Formula $A$
\end_inset
经过有限次初等变换变成矩阵
\begin_inset Formula $B$
\end_inset
, 则称
\series bold
矩阵
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $B$
\end_inset
等价
\series default
, 记为
\begin_inset Formula $A\sim B$
\end_inset
, (或
\begin_inset Formula $A\rightarrow B$
\end_inset
).
\end_layout
\begin_layout Remark*
在理论表述或证明中, 常用记号 “
\begin_inset Formula $\sim$
\end_inset
”, 在对矩阵作初等变换运算的过程中常用记号 “
\begin_inset Formula $\rightarrow$
\end_inset
”.
\end_layout
\begin_layout Standard
矩阵之间的等价关系具有下列基本性质:
\end_layout
\begin_layout Standard
(1) 反身性:
\begin_inset Formula $A\sim A$
\end_inset
;
\end_layout
\begin_layout Standard
(2) 对称性: 若
\begin_inset Formula $A\sim B$
\end_inset
, 则
\begin_inset Formula $B\sim A$
\end_inset
;
\end_layout
\begin_layout Standard
(3) 传递性: 若
\begin_inset Formula $A\sim B$
\end_inset
,
\begin_inset Formula $B\sim C$
\end_inset
, 则
\begin_inset Formula $A\sim C$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
行阶梯形矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
一般地, 称满足下列条件的矩阵为
\series bold
行阶梯形矩阵
\series default
:
\end_layout
\begin_layout Standard
(1).
零行 (元素全为零的行) 位于矩阵的下方;
\end_layout
\begin_layout Standard
(2).
各非零行的首非零元 (从左至右的一个不为零的元素) 的列标随着行标的增大而严格增大 (或说其列标一定不小于行标).
\end_layout
\begin_layout Standard
例如:
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
$$
\end_layout
\begin_layout Plain Layout
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=red!15] (2-|1) |- (4-|1) |- (4-|3) |- (3-|3) |- (3-|2) |- (2-|2)
|- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=blue!15] (1-|1) |- (2-|2) |- (3-|3) |- (4-|5) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
*&*&*&*
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&*&*&*
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&*&*
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=red!15] (2-|1) |- (2-|3) |- (3-|3) |- (3-|5) |- (4-|5) |- (4-|1)
|- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=blue!15] (1-|1) |- (2-|3) |- (3-|3) |- (3-|5) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
*&*&*&*
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&*&*
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&0&0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=red!15] (1-|2) |- (2-|2) |- (2-|4) |- (3-|4) |- (3-|6) |- (4-|6)
|- (4-|1) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=blue!15] (1-|2) |- (2-|4) |- (3-|6) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
0&*&*&*&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&0&*&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&0&0&0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
行最简形矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
一般地, 称满足下列条件的阶梯形矩阵为
\series bold
行最简形矩阵
\series default
:
\end_layout
\begin_layout Standard
(1).
各非零行的首非零元都是
\begin_inset Formula $1$
\end_inset
;
\end_layout
\begin_layout Standard
(2).
每个首非零元所在列的其余元素都是零.
\end_layout
\begin_layout Standard
例如:
\begin_inset ERT
status open
\begin_layout Plain Layout
$$
\end_layout
\begin_layout Plain Layout
\backslash
begin{bmatrix}
\end_layout
\begin_layout Plain Layout
1 & 0 & 0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 1 & 0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 0 & 1
\end_layout
\begin_layout Plain Layout
\backslash
end{bmatrix},
\backslash
\backslash
begin{bmatrix}
\end_layout
\begin_layout Plain Layout
1 & 0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 0
\end_layout
\begin_layout Plain Layout
\backslash
end{bmatrix},
\backslash
\backslash
begin{bmatrix}
\end_layout
\begin_layout Plain Layout
1 & 0 & 0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 1 & 0
\end_layout
\begin_layout Plain Layout
\backslash
end{bmatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=red!15] (2-|1) |- (2-|3) |- (3-|3) |- (3-|5) |- (4-|5) |- (4-|1)
|- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=blue!15] (1-|1) |- (2-|3) |- (3-|5) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
1 & * & 0 & *
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 0 & 1 & *
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 0 & 0 & 0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=red!15] (1-|2) |- (2-|2) |- (2-|4) |- (3-|4) |- (3-|6) |- (4-|6)
|- (4-|1) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
tikz
\backslash
draw [fill=blue!15] (1-|2) |- (2-|4) |- (3-|6) |- cycle ;
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
0 & 1 & * & 0 & *
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 0 & 0 & 1 & *
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0 & 0 & 0 & 0 & 0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的标准形
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
一般地,
\series bold
矩阵
\begin_inset Formula $A$
\end_inset
的标准形
\begin_inset Formula $D$
\end_inset
\series default
具有如下特点:
\end_layout
\begin_layout Standard
\begin_inset Formula $D$
\end_inset
的左上角是一个单位矩阵, 其余元素全为
\begin_inset Formula $0$
\end_inset
.
\end_layout
\begin_layout Standard
例如:
\begin_inset ERT
status open
\begin_layout Plain Layout
$$
\end_layout
\begin_layout Plain Layout
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
rectanglecolor{blue!15}{1-1}{3-3}
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
1&0&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&1&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&1
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
rectanglecolor{blue!15}{1-1}{2-2}
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
1&0&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&1&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0&0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
rectanglecolor{blue!15}{1-1}{2-2}
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
1&0&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&1&0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix},
\backslash
\backslash
begin{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
\backslash
CodeBefore
\end_layout
\begin_layout Plain Layout
\backslash
rectanglecolor{blue!15}{1-1}{2-2}
\end_layout
\begin_layout Plain Layout
\backslash
Body
\end_layout
\begin_layout Plain Layout
1&0
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
0&0
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
阶梯型矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
已知矩阵
\begin_inset Formula $A=\begin{bmatrix}3 & 2 & 9 & 6\\
-1 & -3 & 4 & -17\\
1 & 4 & -7 & 3\\
-1 & -4 & 7 & -3
\end{bmatrix}$
\end_inset
, 对其作初等行变换, 先化为行阶梯形矩阵.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
\begin{aligned}A= & \begin{bmatrix}3 & 2 & 9 & 6\\
-1 & -3 & 4 & -17\\
1 & 4 & -7 & 3\\
-1 & -4 & 7 & -3
\end{bmatrix}\xrightarrow{r_{1}\leftrightarrow r_{3}}\begin{bmatrix}1 & 4 & -7 & 3\\
-1 & -3 & 4 & -17\\
3 & 2 & 9 & 6\\
-1 & -4 & 7 & -3
\end{bmatrix}\\
& \xrightarrow[r_{4}+r_{1}]{{r_{2}+r_{1}\atop r_{3}-3r_{1}}}\begin{bmatrix}1 & 4 & -7 & 3\\
0 & 1 & -3 & -14\\
0 & -10 & 30 & -3\\
0 & 0 & 0 & 0
\end{bmatrix}\xrightarrow{r_{3}+10r_{2}}\begin{bmatrix}1 & 4 & -7 & 3\\
0 & 1 & -3 & -14\\
0 & 0 & 0 & -143\\
0 & 0 & 0 & 0
\end{bmatrix}\xlongequal{\text{ 记作 }}B.
\end{aligned}
\]
\end_inset
\end_layout
\begin_layout Standard
这里的矩阵
\begin_inset Formula $B$
\end_inset
依其形状的特征称为
\series bold
行阶梯形矩阵
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的标准形
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\xout off
\uuline off
\uwave off
\noun off
\color none
用初等变换化矩阵
\begin_inset Formula $\begin{bmatrix}0 & 2 & -4\\
-1 & -4 & 5\\
3 & 1 & 7\\
0 & 5 & -10\\
2 & 3 & 0
\end{bmatrix}$
\end_inset
为标准形.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
\begin{aligned}\begin{bmatrix}0 & 2 & -4\\
-1 & -4 & 5\\
3 & 1 & 7\\
0 & 5 & -10\\
2 & 3 & 0
\end{bmatrix} & \xrightarrow{r_{1}\leftrightarrow r_{2}}\begin{bmatrix}-1 & -4 & 5\\
0 & 2 & -4\\
3 & 1 & 7\\
0 & 5 & -10\\
2 & 3 & 0
\end{bmatrix}\xrightarrow[r_{5}+2r_{1}]{r_{3}+3r_{1}}\begin{bmatrix}-1 & -4 & 5\\
0 & 2 & -4\\
0 & -11 & 22\\
0 & 5 & -10\\
0 & -5 & 10
\end{bmatrix}\\
& \hspace{-8em}\xrightarrow[c_{3}+5c_{1}]{c_{2}-4c_{1}}\begin{bmatrix}-1 & 0 & 0\\
0 & 2 & -4\\
0 & -11 & 22\\
0 & 5 & -10\\
0 & -5 & 10
\end{bmatrix}\xrightarrow{c_{3}+2c_{2}}\begin{bmatrix}1 & 0 & 0\\
0 & 2 & 0\\
0 & -11 & 0\\
0 & 5 & 0\\
0 & -5 & 0
\end{bmatrix}\xrightarrow[{c_{4}-5/2c_{2}\atop c_{5}+5/2c_{2}}]{c_{3}+11/2c_{2}}\begin{bmatrix}1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{bmatrix}\xrightarrow{c_{2}/2}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{bmatrix}.
\end{aligned}
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的标准形
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
将矩阵
\begin_inset Formula $A=\begin{bmatrix}2 & 1 & 2 & 3\\
4 & 1 & 3 & 5\\
2 & 0 & 1 & 2
\end{bmatrix}$
\end_inset
化为标准形.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
\begin{aligned}A & =\begin{bmatrix}2 & 1 & 2 & 3\\
4 & 1 & 3 & 5\\
2 & 0 & 1 & 2
\end{bmatrix}\longrightarrow\begin{bmatrix}2 & 1 & 2 & 3\\
0 & -1 & -1 & -1\\
0 & -1 & -1 & -1
\end{bmatrix}\\
& \longrightarrow\begin{bmatrix}2 & 0 & 0 & 0\\
0 & -1 & -1 & -1\\
0 & -1 & -1 & -1
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & 0 & 0 & 0\\
0 & -1 & -1 & -1\\
0 & 0 & 0 & 0
\end{bmatrix}\\
& \longrightarrow\begin{bmatrix}1 & 0 & 0 & 0\\
0 & -1 & 0 & 0\\
0 & 0 & 0 & 0
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 0
\end{bmatrix}.
\end{aligned}
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
化为标准型矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Theorem
\begin_inset CommandInset label
LatexCommand label
name "thm:2.5-1"
\end_inset
任意一个矩阵
\begin_inset Formula $A=\left(a_{ij}\right)_{m\times n}$
\end_inset
经过有限次初等变换, 可以化为下列标准形矩阵
\end_layout
\begin_layout Theorem
\begin_inset ERT
status open
\begin_layout Plain Layout
$$
\end_layout
\begin_layout Plain Layout
A=
\backslash
begin{bNiceMatrix}[last-row,last-col,xdots/line-style={dashed,blue}]
\end_layout
\begin_layout Plain Layout
1 & & & & & &
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
ddots &
\backslash
Vdots & & & &
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
Cdots & 1 &
\backslash
Cdots & & &
\backslash
leftarrow r
\backslash
text{行}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& &
\backslash
Vdots & 0 & & &
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & &
\backslash
ddots & &
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & 0 &
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& &
\backslash
overset{
\backslash
uparrow}{r
\backslash
text{列}} & & & &
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}=
\backslash
begin{bmatrix}
\end_layout
\begin_layout Plain Layout
E_r & O_{r
\backslash
times(n-r)}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
O_{(m-r)
\backslash
times r} & O_{(m-r)
\backslash
times(n-r)}
\end_layout
\begin_layout Plain Layout
\backslash
end{bmatrix}.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\begin_layout Remark*
定理
\begin_inset CommandInset ref
LatexCommand ref
reference "thm:2.5-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
的证明也实质上给出了下列结论:
\end_layout
\begin_layout Theorem*
\begin_inset Argument 1
status open
\begin_layout Plain Layout
\begin_inset CommandInset ref
LatexCommand ref
reference "thm:2.5-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
'
\end_layout
\end_inset
任一矩阵
\begin_inset Formula $A$
\end_inset
总可以经过有限次初等行变换化为行阶梯形矩阵, 并进而化为行最简形矩阵.
\end_layout
\begin_layout Standard
根据定理
\begin_inset CommandInset ref
LatexCommand ref
reference "thm:2.5-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
的证明及初等变换的可逆性, 有
\end_layout
\begin_layout Corollary
\begin_inset CommandInset label
LatexCommand label
name "cor:5.7"
\end_inset
如果
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $n$
\end_inset
阶可逆矩阵, 则矩阵
\begin_inset Formula $A$
\end_inset
经过有限次初等变换可化为单位矩阵
\begin_inset Formula $E$
\end_inset
, 即
\begin_inset Formula $A\sim E$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Subsection
初等矩阵
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
初等矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
对单位矩阵
\begin_inset Formula $E$
\end_inset
施以一次初等变换得到矩阵称为
\series bold
初等矩阵
\series default
.
\end_layout
\begin_layout Standard
三种初等变换分别对应着三种初等矩阵.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
初等矩阵-1
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
(1).
\begin_inset Formula $E$
\end_inset
的第
\begin_inset Formula $i,j$
\end_inset
行 (列) 互换得到的矩阵
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\begin_layout Plain Layout
\backslash
setcounter{MaxMatrixCols}{12}
\end_layout
\begin_layout Plain Layout
\backslash
newcommand{
\backslash
blue}{
\backslash
color{blue}}
\end_layout
\begin_layout Plain Layout
E(i,j)=
\backslash
begin{bNiceMatrix}[last-row,last-col,nullify-dots,xdots/line-style={dashed,blue}
]
\end_layout
\begin_layout Plain Layout
1& & &
\backslash
Vdots & & & &
\backslash
Vdots
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
Ddots[line-style=standard]
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & 1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
Cdots[color=blue,line-style=dashed]& & &
\backslash
blue 0 &
\backslash
Cdots & & &
\backslash
blue 1 & & &
\backslash
Cdots &
\backslash
blue
\backslash
leftarrow i
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & 1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & &
\backslash
Vdots & &
\backslash
Ddots[line-style=standard] & &
\backslash
Vdots
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & 1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
Cdots & & &
\backslash
blue 1 &
\backslash
Cdots & &
\backslash
Cdots &
\backslash
blue 0 & & &
\backslash
Cdots &
\backslash
blue
\backslash
leftarrow j
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & & & 1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & & & & & & & &
\backslash
Ddots[line-style=standard]
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & &
\backslash
Vdots & & & &
\backslash
Vdots & & & 1
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
& & &
\backslash
blue
\backslash
overset{
\backslash
uparrow}{i} & & & &
\backslash
blue
\backslash
overset{
\backslash
uparrow}{j}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}
\backslash
quad.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
初等矩阵-2
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
(2).
\begin_inset Formula $E$
\end_inset
的第
\begin_inset Formula $i$
\end_inset
行 (列) 乘以非零数
\begin_inset Formula $k$
\end_inset
得到的矩阵
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
$$E
\backslash
left(i(k)
\backslash
right)=
\backslash
begin{bNiceMatrix}[last-row,last-col,xdots/line-style={dashed,blue}]
\end_layout
\begin_layout Plain Layout
1&&&&&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
ddots&&&&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&1&
\backslash
Vdots&&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&
\backslash
Cdots&k&
\backslash
Cdots&&&i
\backslash
text{ 行}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&
\backslash
Vdots&1&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&&&
\backslash
ddots&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&&&&1&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&i
\backslash
text{ 列}&&&&
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}.
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
初等矩阵-3
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
(3).
\begin_inset Formula $E$
\end_inset
的第
\begin_inset Formula $j$
\end_inset
行乘以数
\begin_inset Formula $k$
\end_inset
加到第
\begin_inset Formula $i$
\end_inset
行上, 或
\begin_inset Formula $E$
\end_inset
的第
\begin_inset Formula $i$
\end_inset
列乘以数
\begin_inset Formula $k$
\end_inset
加到第
\begin_inset Formula $j$
\end_inset
列上得到的矩阵
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
$$E
\backslash
left(i+j(k)
\backslash
right)=
\backslash
begin{bNiceMatrix}[last-row,last-col,xdots/line-style={dashed,blue}]
\end_layout
\begin_layout Plain Layout
1&&&&&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
ddots&
\backslash
Vdots&&
\backslash
Vdots&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&
\backslash
Cdots&1&
\backslash
Cdots&k&
\backslash
Cdots&&i
\backslash
text{ 行}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&
\backslash
Vdots&
\backslash
ddots&
\backslash
Vdots&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&&1&
\backslash
Cdots&&j
\backslash
text{ 行}
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&&
\backslash
Vdots&
\backslash
ddots&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&&&&1&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&&&&&&
\backslash
\backslash
\end_layout
\begin_layout Plain Layout
&&i
\backslash
text{ 列}&&j
\backslash
text{ 列}&&&
\end_layout
\begin_layout Plain Layout
\backslash
end{bNiceMatrix}
\end_layout
\begin_layout Plain Layout
$$
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
初等矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Proposition
关于初等矩阵有下列性质:
\end_layout
\begin_layout Proposition
(1).
\begin_inset Formula $E(i,j)^{-1}=E(i,j)$
\end_inset
;
\begin_inset Formula $E(i(k))^{-1}=E\left(i\left(k^{-1}\right)\right)$
\end_inset
;
\begin_inset Formula $E(i+j(k))^{-1}=E(i+j(-k))$
\end_inset
;
\end_layout
\begin_layout Proposition
(2).
\begin_inset Formula $|E(i,j)|=-1$
\end_inset
;
\begin_inset Formula $|E(i(k))|=k$
\end_inset
;
\begin_inset Formula $|E(i+j(k))|=1$
\end_inset
.
\end_layout
\begin_layout Theorem
\begin_inset Formula $A$
\end_inset
是一个
\begin_inset Formula $m\times n$
\end_inset
矩阵, 对
\begin_inset Formula $A$
\end_inset
施行一次初等行 (列) 变换, 相当于用同种的
\begin_inset Formula $m(n)$
\end_inset
阶初等矩阵左 (右) 乘
\begin_inset Formula $A$
\end_inset
.
\end_layout
\begin_layout Itemize
\begin_inset Formula $E(i,j)A$
\end_inset
: 交换矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $i,j$
\end_inset
两行;
\end_layout
\begin_layout Itemize
\begin_inset Formula $E(i(k))A$
\end_inset
: 对矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $i$
\end_inset
行乘以
\begin_inset Formula $k$
\end_inset
;
\end_layout
\begin_layout Itemize
\begin_inset Formula $E(i+j(k))A$
\end_inset
: 对矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $j$
\end_inset
行乘以
\begin_inset Formula $k$
\end_inset
加到第
\begin_inset Formula $i$
\end_inset
行上.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
初等矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设有矩阵
\begin_inset Formula $A=\begin{bmatrix}3 & 0 & 1\\
1 & -1 & 2\\
0 & 1 & 1
\end{bmatrix}$
\end_inset
, 而
\begin_inset Formula $E_{3}(1,2)=\begin{bmatrix}0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $E_{3}(3+1(2))=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
2 & 0 & 1
\end{bmatrix}$
\end_inset
,
\end_layout
\begin_layout Standard
\begin_inset Formula $E_{3}(1,2)A=\begin{bmatrix}0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}3 & 0 & 1\\
1 & -1 & 2\\
0 & 1 & 1
\end{bmatrix}=\begin{bmatrix}1 & -1 & 2\\
3 & 0 & 1\\
0 & 1 & 1
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Standard
即用
\begin_inset Formula $E_{3}(1,2)$
\end_inset
左乘
\begin_inset Formula $A$
\end_inset
, 相当于交换矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $1$
\end_inset
行与第
\begin_inset Formula $2$
\end_inset
行.
\end_layout
\begin_layout Standard
\begin_inset Formula $AE_{3}(31(2))=\begin{bmatrix}3 & 0 & 1\\
1 & -1 & 2\\
0 & 1 & 1
\end{bmatrix}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
2 & 0 & 1
\end{bmatrix}=\begin{bmatrix}5 & 0 & 1\\
5 & -1 & 2\\
2 & 1 & 1
\end{bmatrix}$
\end_inset
,
\end_layout
\begin_layout Standard
即用
\begin_inset Formula $E_{3}(31(2))$
\end_inset
右乘
\begin_inset Formula $A$
\end_inset
, 相当于将矩阵
\begin_inset Formula $A$
\end_inset
的第
\begin_inset Formula $3$
\end_inset
列乘
\begin_inset Formula $2$
\end_inset
加到第
\begin_inset Formula $1$
\end_inset
列.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求逆矩阵的初等变换法
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
在第二章第三节中, 给出了矩阵
\begin_inset Formula $A$
\end_inset
可逆的充要条件, 也给出了利用伴随矩阵求逆矩阵
\begin_inset Formula $A^{-1}$
\end_inset
的方法, 即
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
A^{-1}=\frac{1}{|A|}A^{*}.
\]
\end_inset
\end_layout
\begin_layout Standard
该方法称为
\series bold
伴随矩阵法
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求逆矩阵的初等变换法
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
对于较高阶的矩阵, 用伴随矩阵法求逆矩阵计算量太大, 下面介绍一种较为简便的方法:
\series bold
初等变换法
\series default
.
\end_layout
\begin_layout Theorem
\begin_inset Formula $n$
\end_inset
阶矩阵
\begin_inset Formula $A$
\end_inset
可逆的充分必要条件是
\begin_inset Formula $A$
\end_inset
可以表示为若干初等矩阵的乘积.
\end_layout
\begin_layout Proof
\begin_inset Argument 1
status open
\begin_layout Plain Layout
Hint
\end_layout
\end_inset
由推论
\begin_inset CommandInset ref
LatexCommand ref
reference "cor:5.7"
plural "false"
caps "false"
noprefix "false"
\end_inset
, 当
\begin_inset Formula $A$
\end_inset
可逆时, 矩阵
\begin_inset Formula $A$
\end_inset
可以经过有限次初等变换得到
\begin_inset Formula $n$
\end_inset
阶单位阵
\begin_inset Formula $E$
\end_inset
, 即
\begin_inset Formula
\[
P_{s}P_{s-1}\cdots P_{2}P_{1}A=E,
\]
\end_inset
其中
\begin_inset Formula $P_{1},\cdots,P_{s}$
\end_inset
表示对矩阵
\begin_inset Formula $A$
\end_inset
的初等变换矩阵.
\begin_inset Formula $A=P_{1}^{-1}P_{2}^{-1}\cdots P_{s}^{-1}$
\end_inset
\begin_inset Formula $s$
\end_inset
个初等矩阵的乘积.
\end_layout
\begin_layout Standard
因此, 求矩阵
\begin_inset Formula $A$
\end_inset
的逆矩阵
\begin_inset Formula $A^{-1}$
\end_inset
时, 可构造
\begin_inset Formula $n\times2n$
\end_inset
阶矩阵
\begin_inset Formula
\[
\begin{bmatrix}A & E\end{bmatrix},
\]
\end_inset
\end_layout
\begin_layout Standard
然后对其施以初等行变换将矩阵
\begin_inset Formula $A$
\end_inset
化为单位矩阵
\begin_inset Formula $E$
\end_inset
, 则上述初等变换同时也将其中的单位矩阵
\begin_inset Formula $E$
\end_inset
化为
\begin_inset Formula $A^{-1}$
\end_inset
, 即
\begin_inset Formula
\[
\begin{bmatrix}A & E\end{bmatrix}\xrightarrow{\text{ 初等行变换 }}\begin{bmatrix}E & A^{-1}\end{bmatrix},
\]
\end_inset
\end_layout
\begin_layout Standard
这就是求逆矩阵的
\series bold
初等变换法
\series default
.
再详细点来说, 就是
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A & E\end{bmatrix} & \xrightarrow{P_{1}}\begin{bmatrix}P_{1}A & P_{1}E\end{bmatrix}\\
& \xrightarrow{P_{2}}\begin{bmatrix}P_{2}P_{1}A & P_{2}P_{1}E\end{bmatrix}\\
& \xrightarrow{P_{3}}\cdots\xrightarrow{P_{s}}\begin{bmatrix}P_{s}\cdots P_{2}P_{1}A & P_{s}\cdots P_{2}P_{1}E\end{bmatrix}\\
& =\begin{bmatrix}E & P_{s}\cdots P_{2}P_{1}\end{bmatrix}=\begin{bmatrix}E & A^{-1}\end{bmatrix}.
\end{align*}
\end_inset
再或者, 用矩阵乘法的语言来说
\begin_inset Formula
\[
P_{s}P_{s-1}\cdots P_{1}\begin{bmatrix}A & E\end{bmatrix}=\begin{bmatrix}P_{s}P_{s-1}\cdots P_{1}A & P_{s}P_{s-1}\cdots P_{1}E\end{bmatrix}=\begin{bmatrix}E & A^{-1}\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求逆矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $A=\begin{bmatrix}1 & 2 & 3\\
2 & 2 & 1\\
3 & 4 & 3
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $A^{-1}$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A & E\end{bmatrix} & =\begin{bmatrix}1 & 2 & 3 & 1 & 0 & 0\\
2 & 2 & 1 & 0 & 1 & 0\\
3 & 4 & 3 & 0 & 0 & 1
\end{bmatrix}\xrightarrow[r_{3}-3r_{1}]{r_{2}-2r_{1}}\begin{bmatrix}1 & 2 & 3 & 1 & 0 & 0\\
0 & -2 & -5 & -2 & 1 & 0\\
0 & -2 & -6 & -3 & 0 & 1
\end{bmatrix}\\
& \xrightarrow[r_{3}-r_{2}]{r_{1}+r_{2}}\begin{bmatrix}1 & 0 & -2 & -1 & 1 & 0\\
0 & -2 & -5 & -2 & 1 & 0\\
0 & 0 & -1 & -1 & -1 & 1
\end{bmatrix}\xrightarrow[r_{2}-5r_{3}]{r_{1}-2r_{3}}\begin{bmatrix}1 & 0 & 0 & 1 & 3 & -2\\
0 & -2 & 0 & 3 & 6 & -5\\
0 & 0 & -1 & -1 & -1 & 1
\end{bmatrix}\\
& \xrightarrow[r_{3}\div(-1)]{r_{2}\div(-2)}\begin{bmatrix}1 & 0 & 0 & 1 & 3 & -2\\
0 & 1 & 0 & -3/2 & -3 & 5/2\\
0 & 0 & 1 & 1 & 1 & -1
\end{bmatrix},
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A & E\end{bmatrix} & \xrightarrow{}\begin{bmatrix}1 & 0 & 0 & 1 & 3 & -2\\
0 & 1 & 0 & -3/2 & -3 & 5/2\\
0 & 0 & 1 & 1 & 1 & -1
\end{bmatrix},
\end{align*}
\end_inset
所以
\begin_inset Formula
\[
A^{-1}=\begin{bmatrix}1 & 3 & -2\\
-3/2 & -3 & 5/2\\
1 & 1 & -1
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求逆矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
已知矩阵
\begin_inset Formula $A=\begin{bmatrix}1 & 0 & 1\\
2 & 1 & 0\\
-3 & 2 & -5
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $(E-A)^{-1}$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula $A=\begin{bmatrix}1 & 0 & 1\\
2 & 1 & 0\\
-3 & 2 & -5
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $E-A=\begin{bmatrix}0 & 0 & -1\\
-2 & 0 & 0\\
3 & -2 & 6
\end{bmatrix}$
\end_inset
,
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{aligned}\begin{bmatrix}E-A & E\end{bmatrix} & =\begin{bmatrix}0 & 0 & -1 & 1 & 0 & 0\\
-2 & 0 & 0 & 0 & 1 & 0\\
3 & -2 & 6 & 0 & 0 & 1
\end{bmatrix}\longrightarrow\begin{bmatrix}-2 & 0 & 0 & 0 & 1 & 0\\
0 & 0 & -1 & 1 & 0 & 0\\
3 & -2 & 6 & 0 & 0 & 1
\end{bmatrix}\\
& \longrightarrow\begin{bmatrix}-2 & 0 & 0 & 0 & 1 & 0\\
3 & -2 & 6 & 0 & 0 & 1\\
0 & 0 & -1 & 1 & 0 & 0
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & 0 & 0 & 0 & -1/2 & 0\\
3 & -2 & 6 & 0 & 0 & 1\\
0 & 0 & -1 & 1 & 0 & 0
\end{bmatrix}\\
& \longrightarrow\begin{bmatrix}1 & 0 & 0 & 0 & -1/2 & 0\\
0 & 1 & -3 & 0 & -3/4 & -1/2\\
0 & 0 & 1 & -1 & 0 & 0
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & 0 & 0 & 0 & -1/2 & 0\\
0 & 1 & 0 & -3 & -3/4 & -1/2\\
0 & 0 & 1 & -1 & 0 & 0
\end{bmatrix},
\end{aligned}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
\begin{aligned}\begin{bmatrix}E-A & E\end{bmatrix} & \longrightarrow\begin{bmatrix}1 & 0 & 0 & 0 & -1/2 & 0\\
0 & 1 & 0 & -3 & -3/4 & -1/2\\
0 & 0 & 1 & -1 & 0 & 0
\end{bmatrix},\end{aligned}
\]
\end_inset
所以
\begin_inset Formula
\[
(E-A)^{-1}=\begin{bmatrix}0 & -1/2 & 0\\
-3 & -3/4 & -1/2\\
-1 & 0 & 0
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求逆矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
求下列
\begin_inset Formula $n$
\end_inset
阶方阵的逆矩阵:
\begin_inset Formula
\[
A=\begin{bmatrix} & & & a_{1}\\
& & a_{2}\\
& \iddots\\
a_{n}
\end{bmatrix},\ a_{i}\neq0,\ (i=1,2,\cdots,n),
\]
\end_inset
\begin_inset Formula $A$
\end_inset
中空白处表示为零.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix} & & & a_{1} & 1\\
& & a_{2} & & & 1\\
& \iddots & & & & & \ddots\\
a_{n} & & & & & & & 1
\end{bmatrix} & \rightarrow\begin{bmatrix}a_{n} & & & & & & & 1\\
& a_{n-1} & & & & & \iddots\\
& & \ddots & & & 1\\
& & & a_{1} & 1
\end{bmatrix}\\
& \rightarrow\begin{bmatrix}1 & & & & & & & 1/a_{n}\\
& 1 & & & & & \iddots\\
& & \ddots & & & 1/a_{2}\\
& & & 1 & 1/a_{1}
\end{bmatrix},
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A & E\end{bmatrix}\rightarrow\begin{bmatrix} & & & a_{1} & 1\\
& & a_{2} & & & 1\\
& \iddots & & & & & \ddots\\
a_{n} & & & & & & & 1
\end{bmatrix} & \rightarrow\begin{bmatrix}1 & & & & & & & 1/a_{n}\\
& 1 & & & & & \iddots\\
& & \ddots & & & 1/a_{2}\\
& & & 1 & 1/a_{1}
\end{bmatrix},
\end{align*}
\end_inset
所以
\begin_inset Formula $A^{-1}=\begin{bmatrix} & & & 1/a_{n}\\
& & \iddots\\
& 1/a_{2}\\
1/a_{1}
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求逆矩阵的初等变换法
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
把可逆矩阵
\begin_inset Formula $A=\begin{bmatrix}1 & 2 & 0\\
-1 & 1 & 1\\
3 & -2 & 0
\end{bmatrix}$
\end_inset
分解为初等矩阵的乘积.
\end_layout
\begin_layout Solution*
\begin_inset Formula $A$
\end_inset
进行如下初等变换:
\begin_inset Formula
\begin{align*}
\begin{bmatrix}1 & 2 & 0\\
-1 & 1 & 1\\
3 & -2 & 0
\end{bmatrix} & \xrightarrow{c_{2}-2c_{1}}\begin{bmatrix}1 & 0 & 0\\
-1 & 3 & 1\\
3 & -8 & 0
\end{bmatrix}\xrightarrow{r_{2}+r_{1}}\begin{bmatrix}1 & 0 & 0\\
0 & 3 & 1\\
3 & -8 & 0
\end{bmatrix}\xrightarrow{r_{3}-3r_{1}}\begin{bmatrix}1 & 0 & 0\\
0 & 3 & 1\\
0 & -8 & 0
\end{bmatrix}\\
& \xrightarrow{c_{3}\leftrightarrow c_{2}}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 3\\
0 & 0 & -8
\end{bmatrix}\xrightarrow{c_{3}-3c_{2}}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & -8
\end{bmatrix}\xrightarrow{\left(-\frac{1}{8}\right)c_{3}}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
与每次初等交换对应的矩阵分别为:
\begin_inset Formula
\[
\begin{aligned}P_{1}=\begin{bmatrix}1 & 0 & 0\\
1 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}, & P_{2}=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
-3 & 0 & 1
\end{bmatrix}, & P_{3}=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & -1/8
\end{bmatrix},\\
Q_{1}=\begin{bmatrix}1 & -2 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}, & Q_{2}=\begin{bmatrix}1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0
\end{bmatrix}, & Q_{3}=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & -3\\
0 & 0 & 1
\end{bmatrix},
\end{aligned}
\]
\end_inset
其中
\begin_inset Formula $P_{i}$
\end_inset
为行变换的初等矩阵,
\begin_inset Formula $Q_{i}$
\end_inset
为列变换的初等矩阵, 其逆矩阵分别为:
\begin_inset Formula
\[
\begin{aligned}P_{1}^{-1}=\begin{bmatrix}1 & 0 & 0\\
-1 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}, & P_{2}^{-1}=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
3 & 0 & 1
\end{bmatrix}, & P_{3}^{-1}=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & -8
\end{bmatrix},\\
Q_{1}^{-1}=\begin{bmatrix}1 & 2 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}, & Q_{2}^{-1}=\begin{bmatrix}1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0
\end{bmatrix}, & Q_{3}^{-1}=\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 3\\
0 & 0 & 1
\end{bmatrix},
\end{aligned}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
于是
\begin_inset Formula
\begin{align*}
A & =P_{1}^{-1}P_{2}^{-1}P_{3}^{-1}Q_{3}^{-1}Q_{2}^{-1}Q_{1}^{-1}\\
& =\begin{bmatrix}1 & 0 & 0\\
-1 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
3 & 0 & 1
\end{bmatrix}\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & -8
\end{bmatrix}\cdot\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 3\\
0 & 0 & 1
\end{bmatrix}\begin{bmatrix}1 & 0 & 0\\
0 & 0 & 1\\
0 & 1 & 0
\end{bmatrix}\begin{bmatrix}1 & 2 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}.
\end{align*}
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
用初等变换法求解矩阵方程
\begin_inset Formula $AX=B$
\end_inset
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
设矩阵
\begin_inset Formula $A$
\end_inset
可逆, 则求解矩阵方程
\begin_inset Formula $AX=B$
\end_inset
等价于求矩阵
\begin_inset Formula
\[
X=A^{-1}B,
\]
\end_inset
\end_layout
\begin_layout Standard
为此, 可采用类似初等行变换求矩阵的逆的方法, 构造矩阵
\begin_inset Formula $\begin{pmatrix}A & B\end{pmatrix}$
\end_inset
, 对其施以
\series bold
初等行变换
\series default
\begin_inset Foot
status open
\begin_layout Plain Layout
且只能做初等行变换, 而不能做初等列变换
\end_layout
\end_inset
将矩阵
\begin_inset Formula $A$
\end_inset
化为单位矩阵
\begin_inset Formula $E$
\end_inset
, 则上述初等行变换同时也将其中的单位矩阵
\begin_inset Formula $B$
\end_inset
化为
\begin_inset Formula $A^{-1}B$
\end_inset
, 即
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\begin{pmatrix}A & B\end{pmatrix}\xrightarrow{\text{ 初等行变换 }}\begin{pmatrix}E & A^{-1}B\end{pmatrix}.
\]
\end_inset
\end_layout
\begin_layout Standard
这样就给出了用初等行变换求解矩阵方程
\begin_inset Formula $AX=B$
\end_inset
的方法.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
用初等变换法求解矩阵方程
\begin_inset Formula $XA=B$
\end_inset
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
同理, 求解矩阵方程
\begin_inset Formula $XA=B$
\end_inset
, 等价于计算矩阵
\begin_inset Formula $BA^{-1}$
\end_inset
, 亦可利用
\series bold
初等列变换
\series default
\begin_inset Foot
status open
\begin_layout Plain Layout
且只能做初等列变换, 而不能做初等行变换
\end_layout
\end_inset
求矩阵
\begin_inset Formula $BA^{-1}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\begin{pmatrix}A\\
B
\end{pmatrix}\xrightarrow{\text{ 初等列变换 }}\begin{pmatrix}E\\
BA^{-1}
\end{pmatrix}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Box Boxed
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
thickness "0.4pt"
separation "3pt"
shadowsize "4pt"
framecolor "black"
backgroundcolor "none"
status open
\begin_layout Plain Layout
\color red
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-5mm}
\backslash
begin{center}
\end_layout
\begin_layout Plain Layout
左乘变行, 右乘变列.
\end_layout
\begin_layout Plain Layout
\backslash
end{center}
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
解矩阵方程
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
求矩阵
\begin_inset Formula $X$
\end_inset
, 使
\begin_inset Formula $AX=B$
\end_inset
, 其中
\begin_inset Formula $A=\begin{bmatrix}1 & 2 & 3\\
2 & 2 & 1\\
3 & 4 & 3
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B=\begin{bmatrix}2 & 5\\
3 & 1\\
4 & 3
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Solution*
\begin_inset Formula $A$
\end_inset
可逆, 则
\begin_inset Formula $X=A^{-1}B$
\end_inset
.
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A & B\end{bmatrix} & =\begin{bmatrix}1 & 2 & 3 & 2 & 5\\
2 & 2 & 1 & 3 & 1\\
3 & 4 & 3 & 4 & 3
\end{bmatrix}\xrightarrow[r_{3}-3r_{1}]{r_{2}-2r_{1}}\begin{bmatrix}1 & 2 & 3 & 2 & 5\\
0 & -2 & -5 & -1 & -9\\
0 & -2 & -6 & -2 & -12
\end{bmatrix}\\
& \xrightarrow[r_{3}-r_{2}]{r_{1}+r_{2}}\begin{bmatrix}1 & 0 & -2 & 1 & -4\\
0 & -2 & -5 & -1 & -9\\
0 & 0 & -1 & -1 & -3
\end{bmatrix}\xrightarrow[r_{2}-5r_{3}]{r_{1}-2r_{3}}\begin{bmatrix}1 & 0 & 0 & 3 & 2\\
0 & -2 & 0 & 4 & 6\\
0 & 0 & -1 & -1 & -3
\end{bmatrix}\\
& \xrightarrow[r_{3}\div(-1)]{r_{2}\div(-2)}\begin{bmatrix}1 & 0 & 0 & 3 & 2\\
0 & 1 & 0 & -2 & -3\\
0 & 0 & 1 & 1 & 3
\end{bmatrix},
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A & B\end{bmatrix} & \xrightarrow{}\begin{bmatrix}1 & 0 & 0 & 3 & 2\\
0 & 1 & 0 & -2 & -3\\
0 & 0 & 1 & 1 & 3
\end{bmatrix}\leftrightarrow\begin{bmatrix}E & A^{-1}B\end{bmatrix},
\end{align*}
\end_inset
所以
\begin_inset Formula $X=\begin{bmatrix}3 & 2\\
-2 & -3\\
1 & 3
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
解矩阵方程
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
求解矩阵方程
\begin_inset Formula $AX=A+X$
\end_inset
, 其中
\begin_inset Formula $A=\begin{bmatrix}2 & 2 & 0\\
2 & 1 & 3\\
0 & 1 & 0
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Solution*
把所给方程变形为
\begin_inset Formula $(A-E)X=A$
\end_inset
, 则
\begin_inset Formula $X=(A-E)^{-1}A$
\end_inset
.
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A-E & A\end{bmatrix} & =\begin{bmatrix}1 & 2 & 0 & 2 & 2 & 0\\
2 & 0 & 3 & 2 & 1 & 3\\
0 & 1 & -1 & 0 & 1 & 0
\end{bmatrix}\xrightarrow[r_{2}\leftrightarrow r_{3}]{r_{2}-2r_{1}}\begin{bmatrix}1 & 2 & 0 & 2 & 2 & 0\\
0 & 1 & -1 & 0 & 1 & 0\\
0 & -4 & 3 & -2 & -3 & 3
\end{bmatrix}\\
& \xrightarrow[r_{3}\div(-1)]{r_{3}+4r_{2}}\begin{bmatrix}1 & 2 & 0 & 2 & 2 & 0\\
0 & 1 & -1 & 0 & 1 & 0\\
0 & 0 & 0 & 2 & 1 & -3
\end{bmatrix}\xrightarrow{r_{2}+r_{3}}\begin{bmatrix}1 & 2 & 0 & 2 & 2 & 0\\
0 & 1 & 0 & 2 & 0 & -3\\
0 & 0 & 1 & 2 & -1 & -3
\end{bmatrix}\\
& \xrightarrow{r_{1}-2r_{2}}\begin{bmatrix}1 & 2 & 0 & 2 & 2 & 0\\
0 & 1 & 0 & 2 & 0 & -3\\
0 & 0 & 1 & 2 & -1 & -3
\end{bmatrix}
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A-E & A\end{bmatrix} & \xrightarrow{}\begin{bmatrix}1 & 2 & 0 & 2 & 2 & 0\\
0 & 1 & 0 & 2 & 0 & -3\\
0 & 0 & 1 & 2 & -1 & -3
\end{bmatrix}
\end{align*}
\end_inset
即得
\begin_inset Formula $X=\begin{bmatrix}-2 & 2 & 6\\
2 & 0 & -3\\
2 & -1 & -3
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
解矩阵方程
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
求解矩阵方程
\begin_inset Formula $XA=A+2X$
\end_inset
, 其中
\begin_inset Formula $A=\begin{bmatrix}4 & 2 & 3\\
1 & 1 & 0\\
-1 & 2 & 3
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Solution*
先将原方程作恒等变形:
\begin_inset Formula
\[
XA=A+2X\Longleftrightarrow XA-2X=A\Longleftrightarrow X(A-2E)=A,
\]
\end_inset
由于
\begin_inset Formula $A-2E=\begin{bmatrix}2 & 2 & 3\\
1 & -1 & 0\\
-1 & 2 & 1
\end{bmatrix}$
\end_inset
, 而
\begin_inset Formula $|A-2E|=-1\neq0$
\end_inset
, 故
\begin_inset Formula $A-2E$
\end_inset
可逆.
从而
\begin_inset Formula $X=A(A-2E)^{-1}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Solution*
\begin_inset Formula
\begin{align*}
\begin{bmatrix}A-2E\\
A
\end{bmatrix} & =\begin{bmatrix}2 & 2 & 3\\
1 & -1 & 0\\
-1 & 2 & 1\\
4 & 2 & 3\\
1 & 1 & 0\\
-1 & 2 & 3
\end{bmatrix}\longrightarrow\begin{bmatrix}-1 & 2 & 3\\
1 & -1 & 0\\
-2 & 2 & 1\\
1 & 2 & 3\\
1 & 1 & 0\\
-4 & 2 & 3
\end{bmatrix}\longrightarrow\begin{bmatrix}-1 & 0 & 0\\
1 & 1 & 3\\
-2 & -2 & -5\\
1 & 4 & 6\\
1 & 3 & 3\\
-4 & -6 & -9
\end{bmatrix}\\
& \longrightarrow\begin{bmatrix}1 & 0 & 0\\
-1 & 1 & 0\\
2 & -2 & 1\\
-1 & 4 & -6\\
-1 & 3 & -6\\
4 & -6 & 9
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & 0 & 0\\
-1 & 1 & 0\\
0 & 0 & 1\\
11 & -8 & -6\\
11 & -9 & -6\\
-14 & 12 & 9
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1\\
3 & -8 & -6\\
2 & -9 & -6\\
-2 & 12 & 9
\end{bmatrix},
\end{align*}
\end_inset
\begin_inset Formula $X=\begin{bmatrix}3 & -8 & -6\\
2 & -9 & -6\\
-2 & 12 & 9
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Subsection
作业
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
作业
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Problem
化矩阵
\begin_inset Formula $A=\begin{bmatrix}1 & 0 & 1\\
2 & 1 & 0\\
-3 & 2 & -5
\end{bmatrix}$
\end_inset
为矩阵的标准形式.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
求下面矩阵的逆矩阵: (1).
\begin_inset Formula $\begin{bmatrix}2 & 0 & 0\\
0 & 3 & 4\\
0 & 1 & 1
\end{bmatrix}$
\end_inset
; (2).
\begin_inset Formula $A=\begin{bmatrix}1 & 0 & 1\\
2 & 1 & 0\\
-3 & 2 & -5
\end{bmatrix}$
\end_inset
;
\end_layout
\begin_layout Problem
(3).
\begin_inset Formula $\begin{bmatrix}0 & a_{1} & 0 & \cdots & 0\\
0 & 0 & a_{2} & \cdots & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & a_{n-1}\\
a_{n} & 0 & 0 & \cdots & 0
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
已知
\begin_inset Formula $n$
\end_inset
方阵
\begin_inset Formula $A=\begin{bmatrix}2 & 2 & 2 & \cdots & 2\\
0 & 1 & 1 & \cdots & 1\\
0 & 0 & 1 & \cdots & 1\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $A$
\end_inset
中所有元素的代数余子式之和
\begin_inset Formula $\sum_{i,j=1}^{n}A_{ij}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Standard
\series bold
Hint
\series default
: 要求所有代数余子式的和, 这相当于求
\begin_inset Formula
\[
\begin{bmatrix}1 & 1 & \cdots & 1\end{bmatrix}A^{*}\begin{bmatrix}1\\
1\\
\vdots\\
1
\end{bmatrix},
\]
\end_inset
并注意使用
\begin_inset Formula $A^{*}A=\left|A\right|E$
\end_inset
消去不易计算的伴随矩阵.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula $A,B$
\end_inset
\begin_inset Formula $C$
\end_inset
是可逆方阵, 证明: 方阵
\begin_inset Formula $X=\begin{bmatrix}O & O & A\\
O & B & O\\
C & O & O
\end{bmatrix}$
\end_inset
也可逆, 并求
\begin_inset Formula $X^{-1}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula $M=\begin{bmatrix}A & B\\
C & D
\end{bmatrix}$
\end_inset
, 其中
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $D$
\end_inset
是方阵, 证明:
\end_layout
\begin_layout Problem
(1).
\begin_inset Formula $A$
\end_inset
可逆时,
\begin_inset Formula $M$
\end_inset
可逆当且仅当
\begin_inset Formula $D-CA^{-1}B$
\end_inset
可逆;
\end_layout
\begin_layout Problem
(2).
\begin_inset Formula $D$
\end_inset
可逆时,
\begin_inset Formula $M$
\end_inset
可逆当且仅当
\begin_inset Formula $A-BD^{-1}C$
\end_inset
可逆;
\end_layout
\begin_layout Problem
(3).
\begin_inset Formula $A$
\end_inset
可逆时, 行列式的计算有如下降阶法:
\begin_inset Formula
\[
\left|M\right|=\left|A\right|\cdot\left|D-CA^{-1}B\right|.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\begin_layout Frame
\end_layout
\begin_layout Frame
\end_layout
\end_body
\end_document

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/larryleifeng-linear-algebra-lecture.git
git@api.gitlife.ru:oschina-mirror/larryleifeng-linear-algebra-lecture.git
oschina-mirror
larryleifeng-linear-algebra-lecture
larryleifeng-linear-algebra-lecture
master