1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/larryleifeng-linear-algebra-lecture

В этом репозитории не указан файл с открытой лицензией (LICENSE). При использовании обратитесь к конкретному описанию проекта и его зависимостям в коде.
Клонировать/Скачать
la003-4-ppt.lyx 33 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
larryeppes Отправлено 22.04.2024 11:09 5259b86
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass beamer
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage[define-L-C-R]{nicematrix}
\usetheme[lw]{uantwerpen}
\AtBeginDocument{
\renewcommand\logopos{111.png}
\renewcommand\logoneg{111.png}
\renewcommand\logomonowhite{111.png}
\renewcommand\iconfile{111.png}
}
\setbeamertemplate{theorems}[numbered]
\AtBeginSection[]
{
\begin{frame}{章节内容}
\transfade%淡入淡出效果
\begin{multicols}{2}
\tableofcontents[sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
\end{multicols}
\addtocounter{framenumber}{-1} %目录页不计算页码
\end{frame}
}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options aspectratio = 1610, 11pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
向量空间*
\end_layout
\begin_layout Subsection
向量空间与子空间
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间与子空间
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
\begin_inset Formula $V$
\end_inset
\begin_inset Formula $n$
\end_inset
维向量的集合, 若集合
\begin_inset Formula $V$
\end_inset
非空, 且集合
\begin_inset Formula $V$
\end_inset
对于
\begin_inset Formula $n$
\end_inset
维向量的加法及数乘两种运算封闭, 即
\end_layout
\begin_deeper
\begin_layout Enumerate
\begin_inset Formula $\alpha\in V$
\end_inset
,
\begin_inset Formula $\beta\in V$
\end_inset
, 则
\begin_inset Formula $\alpha+\beta\in V$
\end_inset
;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $\alpha\in V$
\end_inset
,
\begin_inset Formula $\lambda\in\RR$
\end_inset
, 则
\begin_inset Formula $\lambda\alpha\in V$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Definition
则称
\series bold
集合
\begin_inset Formula $V$
\end_inset
\begin_inset Formula $\RR$
\end_inset
上的向量空间
\series default
.
\end_layout
\begin_layout Definition
\series bold
所有
\begin_inset Formula $n$
\end_inset
维向量的集合
\series default
\begin_inset Formula $\RR^{n}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间的例子
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
\begin_inset Formula $n$
\end_inset
维向量的线性运算规律, 容易验证集合
\begin_inset Formula $\RR^{n}$
\end_inset
对于加法及数乘两种运算封闭.
因而集合
\begin_inset Formula $\RR^{n}$
\end_inset
构成一向量空间, 称
\begin_inset Formula $\RR^{n}$
\end_inset
\begin_inset Formula $n$
\end_inset
维向量空间.
\end_layout
\begin_layout Remark*
\begin_inset Formula $n=3$
\end_inset
时, 三维向量空间
\begin_inset Formula $\RR^{3}$
\end_inset
表示实空间;
\end_layout
\begin_layout Remark*
\begin_inset Formula $n=2$
\end_inset
时, 二维向量空间
\begin_inset Formula $\RR^{2}$
\end_inset
表示平面;
\end_layout
\begin_layout Remark*
\begin_inset Formula $n=1$
\end_inset
时, 一维向量空间
\begin_inset Formula $\RR^{1}$
\end_inset
表示数轴.
\end_layout
\begin_layout Remark*
\begin_inset Formula $n>3$
\end_inset
时,
\begin_inset Formula $\RR^{n}$
\end_inset
没有直观的几何形象.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
(向量空间的) 子空间
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
设有向量空间
\begin_inset Formula $V_{1}$
\end_inset
\begin_inset Formula $V_{2}$
\end_inset
, 若向量空间
\begin_inset Formula $V_{1}\subset V_{2}$
\end_inset
, 则称
\series bold
\begin_inset Formula $V_{1}$
\end_inset
\begin_inset Formula $V_{2}$
\end_inset
的子空间
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间的例子
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
判别下列集合是否为向量空间
\end_layout
\begin_layout Example
\begin_inset Formula
\[
V_{1}=\left\{ x=\left(0,x_{2},\cdots,x_{n}\right)^{T}\mid x_{2},\cdots,x_{n}\in\RR\right\} .
\]
\end_inset
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Solution*
\begin_inset Formula $V_{1}$
\end_inset
是向量空间.
因为对于
\begin_inset Formula $V_{1}$
\end_inset
的任意两个元素
\begin_inset Formula
\[
\alpha=\left(0,a_{2},\cdots,a_{n}\right)^{T},\ \beta=\left(0,b_{2},\cdots,b_{n}\right)^{T}\in V_{1},
\]
\end_inset
\begin_inset Formula $\alpha+\beta=\left(0,a_{2}+b_{2},\cdots,a_{n}+b_{n}\right)^{T}\in V_{1}$
\end_inset
,
\begin_inset Formula $\lambda\alpha=\left(0,\lambda a_{2},\cdots,\lambda a_{n}\right)^{T}\in V_{1}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
不是向量空间的例子
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
判别下列集合是否为向量空间
\begin_inset Formula
\[
V_{2}=\left\{ x=\left(1,x_{2},\cdots,x_{n}\right)^{T}\mid x_{2},\cdots,x_{n}\in\RR\right\} .
\]
\end_inset
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Solution*
集合
\begin_inset Formula $V_{2}$
\end_inset
不是向量空间.
因为若
\begin_inset Formula $\alpha=\left(1,a_{2},\cdots,a_{n},\right)^{T}\in V_{2}$
\end_inset
, 则
\begin_inset Formula $2\alpha=\left(2,2a_{2},\cdots,2a_{n},\right)^{T}\notin V_{2}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
由两个向量生成的向量空间
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $\alpha,\beta$
\end_inset
为两个已知的
\begin_inset Formula $n$
\end_inset
维向量, 集合
\begin_inset Formula
\[
V=\{\xi=\lambda\alpha+\mu\beta\mid\lambda,\mu\in\RR\},
\]
\end_inset
试判断集合
\begin_inset Formula $V$
\end_inset
是否为向量空间.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Solution*
\begin_inset Formula $V$
\end_inset
是一个向量空间.
因为若
\begin_inset Formula $\xi_{1}=\lambda_{1}\alpha+\mu_{1}\beta$
\end_inset
,
\begin_inset Formula $\xi_{2}=\lambda_{2}\alpha+\mu_{2}\beta$
\end_inset
, 则有
\begin_inset Formula
\[
\xi_{1}+\xi_{2}=\left(\lambda_{1}+\lambda_{2}\right)\alpha+\left(\mu_{1}+\mu_{2}\right)\beta\in V,\ k\xi_{1}=\left(k\lambda_{1}\right)\alpha+\left(k\mu_{1}\right)\beta\in V.
\]
\end_inset
这个向量空间称为
\series bold
由向量
\begin_inset Formula $\alpha,\beta$
\end_inset
所生成的向量空间
\series default
.
通常记
\begin_inset Formula $V$
\end_inset
\begin_inset Formula $\mathrm{span}\left\{ \alpha,\beta\right\} $
\end_inset
.
\end_layout
\begin_layout Pause
\end_layout
\begin_layout Remark*
通常由向量组
\begin_inset Formula $a_{1},a_{2},\cdots,a_{m}$
\end_inset
所生成的向量空间记为
\begin_inset Formula
\[
V=\mathrm{span}\{a_{1},\cdots,a_{m}\}=\left\{ \xi=\lambda_{1}a_{1}+\lambda_{2}a_{2}+\cdots+\lambda_{m}a_{m}\mid\lambda_{1},\lambda_{2},\cdots,\lambda_{m}\in\RR\right\} .
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
等价向量组生成的向量空间相等
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设向量组
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{m}$
\end_inset
与向量组
\begin_inset Formula $\beta_{1},\cdots,\beta_{s}$
\end_inset
等价, 记
\begin_inset Formula
\[
\begin{aligned}V_{1} & =\left\{ \xi=\lambda_{1}\alpha_{1}+\lambda_{2}\alpha_{2}+\cdots+\lambda_{m}\alpha_{m}\mid\lambda_{1},\lambda_{2},\cdots,\lambda_{m}\in\RR\right\} ,\\
V_{2} & =\left\{ \xi=\mu_{1}\beta_{1}+\mu_{2}\beta_{2}+\cdots+\mu_{s}\beta_{s}\mid\mu_{1},\mu_{2},\cdots,\mu_{s}\in\RR\right\} ,
\end{aligned}
\]
\end_inset
试证:
\begin_inset Formula $V_{1}=V_{2}$
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Proof
\begin_inset Formula $\xi\in V_{1}$
\end_inset
, 则
\begin_inset Formula $\xi$
\end_inset
可由
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{m}$
\end_inset
线性表示.
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{m}$
\end_inset
可由
\begin_inset Formula $\beta_{1},\cdots,\beta_{s}$
\end_inset
线性表示, 故
\begin_inset Formula $\xi$
\end_inset
可由
\begin_inset Formula $\beta_{1},\cdots,\beta_{s}$
\end_inset
线性表示, 因此
\begin_inset Formula $\xi\in V_{2}$
\end_inset
.
即, 若
\begin_inset Formula $\xi\in V_{1}$
\end_inset
, 则
\begin_inset Formula $\xi\in V_{2}\Longrightarrow V_{1}\subset V_{2}$
\end_inset
.
\end_layout
\begin_layout Proof
类似地可证: 若
\begin_inset Formula $\xi\in V_{2}$
\end_inset
, 则
\begin_inset Formula $\xi\in V_{1}\Longrightarrow V_{2}\subset V_{1}$
\end_inset
.
\end_layout
\begin_layout Proof
因为
\begin_inset Formula $V_{1}\subset V_{2},V_{2}\subset V_{1}$
\end_inset
, 所以
\begin_inset Formula $V_{1}=V_{2}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
齐次线性方程组的解集是向量空间
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
考虑齐次线性方程组
\begin_inset Formula $Ax=0$
\end_inset
, 全体解的集合为
\begin_inset Formula
\[
S=\{\alpha\mid A\alpha=0\}.
\]
\end_inset
显然,
\begin_inset Formula $S$
\end_inset
非空 (因为
\begin_inset Formula $0\in S$
\end_inset
).
任取
\begin_inset Formula $\alpha,\beta\in S$
\end_inset
,
\begin_inset Formula $k$
\end_inset
为任一常数, 则
\begin_inset Formula
\[
\begin{aligned}A(\alpha+\beta) & =A\alpha+A\beta=0\Longrightarrow\alpha+\beta\in S,\\
A(k\alpha) & =kA\alpha=k0=0\Longrightarrow k\alpha\in S,
\end{aligned}
\]
\end_inset
\begin_inset Formula $S$
\end_inset
是一向量空间.
\begin_inset Formula $S$
\end_inset
为齐次线性方程组
\begin_inset Formula $Ax=0$
\end_inset
的解空间.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
三维空间
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $\RR^{3}$
\end_inset
中过原点的平面是
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Proof
\begin_inset Formula $\RR^{3}$
\end_inset
中过原点的平面可以看作集合
\begin_inset Formula
\[
V=\left\{ (x,y,z)\in\RR^{3}\mid\alpha x+\beta y+\gamma z=0,\text{ 其中 }(\alpha,\beta,\gamma)\in\RR^{3}\right\} .
\]
\end_inset
\begin_inset Formula $\left(x_{1},y_{1},z_{1}\right)\in V$
\end_inset
,
\begin_inset Formula $\left(x_{2},y_{2},z_{2}\right)\in V$
\end_inset
, 即
\begin_inset Formula
\[
\alpha x_{1}+\beta y_{1}+\gamma z_{1}=0,\ \alpha x_{2}+\beta y_{2}+\gamma z_{2}=0,
\]
\end_inset
则有
\begin_inset Formula
\[
\alpha\left(x_{1}+x_{2}\right)+\beta\left(y_{1}+y_{2}\right)+\gamma\left(z_{1}+z_{2}\right)=0,\ k\alpha x_{1}+k\beta y_{1}+k\gamma z_{1}=0,
\]
\end_inset
\begin_inset Formula
\[
\left(x_{1},y_{1},z_{1}\right)+\left(x_{2},y_{2},z_{2}\right)\in V,\ k\left(x_{1},y_{1},z_{1}\right)\in V,
\]
\end_inset
\begin_inset Formula $\RR^{3}$
\end_inset
中过原点的平面是
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
\begin_inset Formula $\RR^{2}$
\end_inset
不是
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
向量空间
\begin_inset Formula $\RR^{2}$
\end_inset
不是
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间, 因为
\begin_inset Formula $\RR^{2}$
\end_inset
根本不是
\begin_inset Formula $\RR^{3}$
\end_inset
的子集 (
\begin_inset Formula $\RR^{3}$
\end_inset
中的向量有三个分量, 但
\begin_inset Formula $\RR^{2}$
\end_inset
中的分量却只有两个).
集合
\begin_inset Formula
\[
H=\{(s,t,0)\mid s,t\in\RR\}
\]
\end_inset
\begin_inset Formula $\RR^{3}$
\end_inset
的子集
\begin_inset Foot
status open
\begin_layout Plain Layout
\begin_inset Formula $\RR^{2}$
\end_inset
有相同的性态, 尽管严格意义上
\begin_inset Formula $H$
\end_inset
不同于
\begin_inset Formula $\RR^{2}$
\end_inset
\end_layout
\end_inset
.
证明
\begin_inset Formula $H$
\end_inset
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Proof
任取
\begin_inset Formula $\left(s_{1},t_{1},0\right),\left(s_{2},t_{2},0\right)\in H$
\end_inset
,
\begin_inset Formula $k$
\end_inset
为任意常数, 则
\end_layout
\begin_layout Proof
\begin_inset Formula
\[
\left(s_{1},t_{1},0\right)+\left(s_{2},t_{2},0\right)\in H,\ k\left(s_{1},t_{1},0\right)\in H,
\]
\end_inset
因此
\begin_inset Formula $H$
\end_inset
\begin_inset Formula $\RR^{3}$
\end_inset
的子空间.
\end_layout
\end_deeper
\begin_layout Subsection
向量空间的基与维数
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间的基与维数
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
\begin_inset Formula $V$
\end_inset
是向量空间, 若有
\begin_inset Formula $r$
\end_inset
个向量
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{r}\in V$
\end_inset
, 且满足
\end_layout
\begin_deeper
\begin_layout Enumerate
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{r}$
\end_inset
线性无关;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $V$
\end_inset
中任一向量都可由
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{r}$
\end_inset
线性表示.
\end_layout
\end_deeper
\begin_layout Definition
则称
\series bold
向量组
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{r}$
\end_inset
为向量空间
\begin_inset Formula $V$
\end_inset
的一个基
\series default
, 数
\begin_inset Formula $r$
\end_inset
称为
\series bold
向量空间
\begin_inset Formula $V$
\end_inset
的维数
\series default
, 记为
\begin_inset Formula $\mathrm{dim}V=r$
\end_inset
并称
\series bold
\begin_inset Formula $V$
\end_inset
\begin_inset Formula $r$
\end_inset
维向量空间
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
\series bold
向量空间的注记
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Remark*
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{1mm}
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Enumerate
只含零向量的向量空间称为
\series bold
\begin_inset Formula $0$
\end_inset
维向量空间
\series default
, 它没有基;
\end_layout
\begin_layout Enumerate
若把向量空间
\begin_inset Formula $V$
\end_inset
看作向量组, 则
\begin_inset Formula $V$
\end_inset
的基就是向量组的极大无关组,
\begin_inset Formula $V$
\end_inset
的维数就是向量组的秩;
\end_layout
\begin_layout Enumerate
若向量组
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{r}$
\end_inset
是向量空间
\begin_inset Formula $V$
\end_inset
的一个基, 则
\begin_inset Formula $V$
\end_inset
可表示为
\begin_inset Formula
\[
V=\left\{ x=\lambda_{1}\alpha_{1}+\cdots+\lambda_{r}\alpha_{r}\mid\lambda_{1},\lambda_{2},\cdots,\lambda_{r}\in\RR\right\} .
\]
\end_inset
此时,
\begin_inset Formula $V$
\end_inset
又称为
\series bold
由基
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{r}$
\end_inset
所生成的向量空间
\series default
, 记作
\begin_inset Formula $V=\mathrm{span}\left\{ \alpha_{1},\cdots,\alpha_{r}\right\} $
\end_inset
.
故数组
\begin_inset Formula $\lambda_{1},\cdots,\lambda_{r}$
\end_inset
称为
\series bold
向量
\begin_inset Formula $x$
\end_inset
在基
\begin_inset Formula $\alpha_{1},\cdots,\alpha_{r}$
\end_inset
中的坐标
\series default
.
\end_layout
\end_deeper
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间中的基与坐标
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Remark*
如果在向量空间
\begin_inset Formula $V$
\end_inset
中取定一个基
\begin_inset Formula $a_{1},a_{2},\cdots,a_{r}$
\end_inset
, 那么
\begin_inset Formula $V$
\end_inset
中任一向量
\begin_inset Formula $x$
\end_inset
可惟一地表示为
\begin_inset Formula
\[
x=\lambda_{1}a_{1}+\lambda_{2}a_{2}+\cdots+\lambda_{r}a_{r},
\]
\end_inset
数组
\begin_inset Formula $\lambda_{1},\lambda_{2},\cdots,\lambda_{r}$
\end_inset
称为
\series bold
向量
\begin_inset Formula $x$
\end_inset
在基
\begin_inset Formula $a_{1},a_{2},\cdots,a_{r}$
\end_inset
中的坐标
\series default
.
特别地, 在
\begin_inset Formula $n$
\end_inset
维向量空间
\begin_inset Formula $\RR^{n}$
\end_inset
中取单位坐标向量组
\begin_inset Formula $e_{1},e_{2},\cdots,e_{n}$
\end_inset
为基, 则以
\begin_inset Formula $x_{1},x_{2},\cdots,x_{n}$
\end_inset
为分量的向量
\begin_inset Formula $x$
\end_inset
, 可表示为
\begin_inset Formula
\[
x=x_{1}e_{1}+x_{2}e_{2}+\cdots+x_{n}e_{n},
\]
\end_inset
可见向量
\begin_inset Formula $x$
\end_inset
在基
\begin_inset Formula $e_{1},e_{2},\cdots,e_{n}$
\end_inset
中的坐标就是该向量的分量.
因此
\begin_inset Formula $e_{1},e_{2},\cdots,e_{n}$
\end_inset
叫做
\series bold
\begin_inset Formula $\RR^{n}$
\end_inset
中的自然基
\series default
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间中基的例子
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
证明单位向量组
\begin_inset Formula
\[
e_{1}=(1,0,0,\cdots,0)^{T},\quad e_{2}=(0,1,0,\cdots,0)^{T},\cdots,\quad e_{n}=(0,0,0,\cdots,1)^{T},
\]
\end_inset
\begin_inset Formula $n$
\end_inset
维向量空间
\begin_inset Formula $\RR^{n}$
\end_inset
的一个基.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Proof
\end_layout
\begin_deeper
\begin_layout Enumerate
易见
\begin_inset Formula $n$
\end_inset
维向量组
\begin_inset Formula $e_{1},e_{2},\cdots,e_{n}$
\end_inset
线性无关;
\end_layout
\begin_layout Enumerate
\begin_inset Formula $n$
\end_inset
维向量空间
\begin_inset Formula $\RR^{n}$
\end_inset
中的任意一向量
\begin_inset Formula $\alpha=\left(a_{1},a_{2},\cdots,a_{n}\right)^{T}$
\end_inset
, 有
\begin_inset Formula $\alpha=a_{1}e_{1}+a_{2}e_{2}+\cdots+a_{n}e_{n}$
\end_inset
, 即
\begin_inset Formula $\RR^{n}$
\end_inset
中的任意一向量都可由向量组
\begin_inset Formula $e_{1},e_{2},\cdots,e_{n}$
\end_inset
线性表出.
因此, 向量组
\begin_inset Formula $e_{1},e_{2},\cdots,e_{n}$
\end_inset
\begin_inset Formula $n$
\end_inset
维向量空间
\begin_inset Formula $\RR^{n}$
\end_inset
的一个基.
\end_layout
\end_deeper
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量空间中的基
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Argument 1
status open
\begin_layout Plain Layout
\begin_inset Formula $\star\star\star\star\star$
\end_inset
\end_layout
\end_inset
给定向量
\begin_inset Formula
\[
\alpha_{1}=(-2,4,1)^{T},\ \alpha_{2}=(-1,3,5)^{T},\ \alpha_{3}=(2,-3,1)^{T},\ \beta=(1,1,3)^{T},
\]
\end_inset
试证明: 向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\alpha_{3}$
\end_inset
是三维向量空间
\begin_inset Formula $\RR^{3}$
\end_inset
的一个基, 并将向量
\begin_inset Formula $\beta$
\end_inset
用这个基线性表示.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Proof
令矩阵
\begin_inset Formula $A=\left(\alpha_{1},\alpha_{2},\alpha_{3}\right)$
\end_inset
, 要证明
\begin_inset Formula $\alpha_{1},\alpha_{2},\alpha_{3}$
\end_inset
\begin_inset Formula $\RR^{3}$
\end_inset
的一个基, 只需证明矩阵
\begin_inset Formula $A$
\end_inset
的初等行变换过程:
\begin_inset Formula $A\rightarrow\cdots\rightarrow E$
\end_inset
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
这说明向量组构成是满秩矩阵, 从而线性无关, 向量空间中的任何向量都可以由向量组线性表出.
\end_layout
\end_inset
;
\end_layout
\begin_layout Proof
又设
\begin_inset Formula $\beta=x_{1}\alpha_{1}+x_{2}\alpha_{2}+x_{3}\alpha_{3}$
\end_inset
\begin_inset Formula $Ax=\beta$
\end_inset
, 解得
\begin_inset Formula $x=A^{-1}\beta$
\end_inset
.
若对
\begin_inset Formula $\begin{bmatrix}A & \beta\end{bmatrix}$
\end_inset
进行初等行变换, 当将
\begin_inset Formula $A$
\end_inset
化为单位矩阵
\begin_inset Formula $E$
\end_inset
时, 可同时将向量
\begin_inset Formula $\beta$
\end_inset
化为
\begin_inset Formula $X=A^{-1}\beta$
\end_inset
.
\begin_inset Formula
\[
\begin{bmatrix}A & \beta\end{bmatrix}=\begin{bmatrix}-2 & -1 & 2 & 1\\
4 & 3 & -3 & 1\\
1 & 5 & 1 & 3
\end{bmatrix}\xrightarrow{\text{ 行变换 }}\begin{bmatrix}1 & 0 & 0 & 4\\
0 & 1 & 0 & -1\\
0 & 0 & 1 & 4
\end{bmatrix},
\]
\end_inset
可见
\begin_inset Formula $A\rightarrow E$
\end_inset
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
不要忘了,
\begin_inset Formula $A\rightarrow E$
\end_inset
意味着矩阵
\begin_inset Formula $A$
\end_inset
\begin_inset Formula $E$
\end_inset
等价, (回忆矩阵等价的定义)
\end_layout
\end_inset
, 故
\begin_inset Formula $\alpha_{1},\alpha_{2},\alpha_{3}$
\end_inset
\begin_inset Formula $\RR^{3}$
\end_inset
的一个基, 且
\begin_inset Formula $\beta=4\alpha_{1}-\alpha_{2}+4\alpha_{3}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量在给定基下的坐标
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
考虑
\begin_inset Formula $\RR^{2}$
\end_inset
的一个基
\begin_inset Formula $\alpha_{1},\alpha_{2}$
\end_inset
, 其中
\begin_inset Formula $\alpha_{1}=(1,0)^{T}$
\end_inset
,
\begin_inset Formula $\alpha_{2}=(1,2)^{T}$
\end_inset
, 若
\begin_inset Formula $\RR^{2}$
\end_inset
的一向量
\begin_inset Formula $x$
\end_inset
在基
\begin_inset Formula $\alpha_{1},\alpha_{2}$
\end_inset
的坐标为
\begin_inset Formula $(-2,3)^{T}$
\end_inset
, 求
\begin_inset Formula $x$
\end_inset
.
\end_layout
\begin_layout Example
又若
\begin_inset Formula $y=(4,5)^{T}$
\end_inset
, 试确定向量
\begin_inset Formula $y$
\end_inset
在基
\begin_inset Formula $\alpha_{1},\alpha_{2}$
\end_inset
的坐标.
\end_layout
\begin_deeper
\begin_layout Pause
\end_layout
\end_deeper
\begin_layout Solution*
根据
\begin_inset Formula $x$
\end_inset
在基
\begin_inset Formula $\alpha_{1},\alpha_{2}$
\end_inset
下的坐标, 计算
\begin_inset Formula
\[
x=(-2)\begin{bmatrix}1\\
0
\end{bmatrix}+3\begin{bmatrix}1\\
2
\end{bmatrix}=\begin{bmatrix}1\\
6
\end{bmatrix}.
\]
\end_inset
\begin_inset Formula $y$
\end_inset
在基
\begin_inset Formula $\alpha_{1},\alpha_{2}$
\end_inset
下的坐标为
\begin_inset Formula $\left(\lambda_{1},\lambda_{2}\right)^{T}$
\end_inset
, 则
\begin_inset Formula
\[
\lambda_{1}\begin{bmatrix}1\\
0
\end{bmatrix}+\lambda_{2}\begin{bmatrix}1\\
2
\end{bmatrix}=\begin{bmatrix}4\\
5
\end{bmatrix}\quad\text{ 或 }\begin{bmatrix}1 & 1\\
0 & 2
\end{bmatrix}\begin{bmatrix}\lambda_{1}\\
\lambda_{2}
\end{bmatrix}=\begin{bmatrix}4\\
5
\end{bmatrix}.
\]
\end_inset
该方程可以通过利用等号左边矩阵的逆来求解.
得到方程的解
\begin_inset Formula $\lambda_{1}=\frac{3}{2}$
\end_inset
,
\begin_inset Formula $\lambda_{2}=\frac{5}{2}$
\end_inset
.
因此
\begin_inset Formula $y=\frac{3}{2}\alpha_{1}+\frac{5}{2}\alpha_{2}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量在给定基下的坐标
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Formula $v_{1}=(3,6,2)^{T}$
\end_inset
,
\begin_inset Formula $v_{2}=(-1,0,1)^{T}$
\end_inset
,
\begin_inset Formula $x=(3,12,7)^{T}$
\end_inset
.
判断
\begin_inset Formula $x$
\end_inset
是否属于由
\begin_inset Formula $v_{1},v_{2}$
\end_inset
生成的向量空间.
如果是, 求出
\begin_inset Formula $x$
\end_inset
\begin_inset Formula $v_{1},v_{2}$
\end_inset
中的坐标.
\end_layout
\begin_layout Solution*
如果
\begin_inset Formula $x$
\end_inset
属于由
\begin_inset Formula $v_{1},v_{2}$
\end_inset
生成的向量空间, 则下列向量方程是有解的:
\begin_inset Formula
\[
\lambda_{1}\begin{bmatrix}3\\
6\\
2
\end{bmatrix}+\lambda_{2}\begin{bmatrix}-1\\
0\\
1
\end{bmatrix}=\begin{bmatrix}3\\
12\\
7
\end{bmatrix}.
\]
\end_inset
若满足上式的
\begin_inset Formula $\lambda_{1},\lambda_{2}$
\end_inset
存在, 它们应该是
\begin_inset Formula $x$
\end_inset
\begin_inset Formula $v_{1},v_{2}$
\end_inset
中的坐标.
利用行变换可得
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
\begin{bmatrix}3 & -1 & 3\\
6 & 0 & 12\\
2 & 1 & 7
\end{bmatrix}\rightarrow\begin{bmatrix}1 & 0 & 2\\
0 & 1 & 3\\
0 & 0 & 0
\end{bmatrix}.
\]
\end_inset
因此
\begin_inset Formula $\lambda_{1}=2$
\end_inset
,
\begin_inset Formula $\lambda_{2}=3$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Subsection
作业
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
作业
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Problem
设向量组
\begin_inset Formula $A:\alpha_{1}=(1,0,1)^{T}$
\end_inset
,
\begin_inset Formula $\alpha_{2}=(2,2,0)^{T}$
\end_inset
,
\begin_inset Formula $\alpha_{3}=(2,4-1)^{T}$
\end_inset
, 向量组
\begin_inset Formula $B:\beta_{1}=(-1,2,4)^{T}$
\end_inset
,
\begin_inset Formula $\beta_{2}=(2,4,-4)^{T}$
\end_inset
.
\end_layout
\begin_layout Problem
试证明向量组
\begin_inset Formula $A$
\end_inset
是三维向量空间
\begin_inset Formula $\RR^{3}$
\end_inset
的一个基, 并将向量组
\begin_inset Formula $B$
\end_inset
用这个基线性表示.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\end_body
\end_document

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/larryleifeng-linear-algebra-lecture.git
git@api.gitlife.ru:oschina-mirror/larryleifeng-linear-algebra-lecture.git
oschina-mirror
larryleifeng-linear-algebra-lecture
larryleifeng-linear-algebra-lecture
master