Слияние кода завершено, страница обновится автоматически
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass beamer
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage{systeme}
\usepackage[define-L-C-R]{nicematrix}
\usetheme[lw]{uantwerpen}
\AtBeginDocument{
\renewcommand\logopos{111.png}
\renewcommand\logoneg{111.png}
\renewcommand\logomonowhite{111.png}
\renewcommand\iconfile{111.png}
}
\setbeamertemplate{theorems}[numbered]
\AtBeginSection[]
{
\begin{frame}{章节内容}
\transfade%淡入淡出效果
\begin{multicols}{2}
\tableofcontents[sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
\end{multicols}
\addtocounter{framenumber}{-1} %目录页不计算页码
\end{frame}
}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options aspectratio = 1610, 11pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 2
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
线性方程组与向量组的关系
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
简介
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
运用线性方程组讨论向量组的线性组合、线性相关性、线性表示以及等价。
\end_layout
\end_deeper
\begin_layout Subsection
线性方程组的向量表示形式
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性方程组的向量表示形式
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
线性方程组的向量表示形式如下
\begin_inset Formula
\begin{align*}
x_{1}\alpha_{1}+x_{2}\alpha_{2}+\cdots+x_{n}\alpha_{n} & =b,\\
x_{1}\alpha_{1}+x_{2}\alpha_{2}+\cdots+x_{n}\alpha_{n} & =0,
\end{align*}
\end_inset
其中
\begin_inset Formula
\[
\alpha_{j}=\begin{bmatrix}a_{1j}\\
a_{2j}\\
\vdots\\
a_{mj}
\end{bmatrix},\quad j=1,2,\cdots,n.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性方程组与向量组的线性关系
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
\begin_inset Formula $m$
\end_inset
维向量
\begin_inset Formula $b$
\end_inset
是否可以由
\begin_inset Formula $m$
\end_inset
维向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
线性表示?
\end_layout
\begin_layout Itemize
非齐次线性方程组
\begin_inset Formula $\begin{cases}
a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=b_{1},\\
a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=b_{2},\\
\vdots\\
a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=b_{m},
\end{cases}$
\end_inset
是否有解?
\end_layout
\begin_layout Itemize
向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
是否线性相关?
\end_layout
\begin_layout Itemize
齐次线性方程组
\begin_inset Formula $\begin{cases}
a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}=0,\\
a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}=0,\\
\vdots\\
a_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}=0,
\end{cases}$
\end_inset
是否有非零解?
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
非齐次线性方程组与向量组的线性表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
记
\begin_inset Formula $A=\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\right)$
\end_inset
.
\end_layout
\begin_layout Corollary
(1).
\begin_inset Formula $m$
\end_inset
维向量
\begin_inset Formula $b$
\end_inset
能由
\begin_inset Formula $m$
\end_inset
维向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
唯一线性表示的充要条件是: 非齐次线性方程组
\begin_inset Formula $Ax=b$
\end_inset
有唯一解, 即
\begin_inset Formula $r(A)=r(A,b)=n$
\end_inset
.
\end_layout
\begin_layout Corollary
(2).
\begin_inset Formula $m$
\end_inset
维向量
\begin_inset Formula $b$
\end_inset
能由
\begin_inset Formula $m$
\end_inset
维向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
线性表示, 且表示法不唯一的充要条件是: 非齐次线性方程组
\begin_inset Formula $Ax=b$
\end_inset
有无穷多解, 即
\begin_inset Formula $r(A)=r(A,b)<n$
\end_inset
.
\end_layout
\begin_layout Corollary
(3).
\begin_inset Formula $m$
\end_inset
维向量
\begin_inset Formula $b$
\end_inset
不能由
\begin_inset Formula $m$
\end_inset
维向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
线性表示的充要条件是: 非齐次线性方程组
\begin_inset Formula $Ax=b$
\end_inset
无解, 即
\begin_inset Formula $r(A)<r(A,b)$
\end_inset
.
\end_layout
\begin_layout Standard
设向量组
\begin_inset Formula $A:\alpha_{1},\alpha_{2},\cdots,\alpha_{m}$
\end_inset
, 向量组
\begin_inset Formula $B:\beta_{1},\beta_{2},\cdots,\beta_{n}$
\end_inset
, 若向量组
\begin_inset Formula $B$
\end_inset
能由向量组
\begin_inset Formula $A$
\end_inset
线性表示, 则存在矩阵
\begin_inset Formula $A_{m\times n}$
\end_inset
, 使
\begin_inset Formula
\[
\left(\beta_{1},\beta_{2},\cdots,\beta_{n}\right)=\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}\right)A_{m\times n},
\]
\end_inset
即矩阵方程
\begin_inset Formula
\[
AX=B\Longleftrightarrow\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}\right)X=\left(\beta_{1},\beta_{2},\cdots,\beta_{n}\right)
\]
\end_inset
有解.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
向量组之间的线性表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
记
\begin_inset Formula
\[
A=\left(\alpha_{1},\alpha_{2},\cdots,\alpha_{m}\right),\ B=\left(\beta_{1},\beta_{2},\cdots,\beta_{n}\right).
\]
\end_inset
\end_layout
\begin_layout Corollary
(1).
向量组
\begin_inset Formula $B:\beta_{1},\beta_{2},\cdots,\beta_{n}$
\end_inset
能由向量组
\begin_inset Formula $A:\alpha_{1},\alpha_{2},\cdots,\alpha_{m}$
\end_inset
线性表示的充要条件是
\begin_inset Formula $r(A)=r(A,B)$
\end_inset
.
\end_layout
\begin_layout Corollary
(2).
向量组
\begin_inset Formula $A:\alpha_{1},\alpha_{2},\cdots,\alpha_{m}$
\end_inset
与向量组
\begin_inset Formula $B:\beta_{1},\beta_{2},\cdots,\beta_{n}$
\end_inset
等价的充要条件是
\begin_inset Formula $r(A)=r(B)=r(A,B)$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
齐次线性方程组与向量组的线性表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Corollary
(1).
\begin_inset Formula $m$
\end_inset
维向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
线性线性相关的充要条件是: 齐次线性方程组
\begin_inset Formula $Ax=0$
\end_inset
有非零解, 即
\begin_inset Formula $r(A)<n$
\end_inset
.
\end_layout
\begin_layout Corollary
(2).
\begin_inset Formula $m$
\end_inset
维向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{n}$
\end_inset
线性无关的充要条件是: 齐次线性方程组
\begin_inset Formula $Ax=0$
\end_inset
只有唯一解, 即
\begin_inset Formula $r(A)=n$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Subsection
齐次方程组?
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
齐次方程组?
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设
\begin_inset Formula $A=\begin{bmatrix}1 & 2 & -2\\
4 & t & 3\\
3 & -1 & 1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $B_{3\times3}\neq O$
\end_inset
且
\begin_inset Formula $AB=O$
\end_inset
, 求
\begin_inset Formula $t$
\end_inset
.
\end_layout
\begin_layout Solution*
因为
\begin_inset Formula $B_{3\times3}\neq O$
\end_inset
且
\begin_inset Formula $AB=O$
\end_inset
, 所以
\begin_inset Formula $Ax=0$
\end_inset
有非零解, 由克莱姆法则知,
\begin_inset Formula $|A|=0$
\end_inset
, 所以
\begin_inset Formula $t=-3$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
线性方程组有解的判别定理
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设
\begin_inset Formula $\beta=\begin{bmatrix}b_{1} & b_{2} & \cdots & b_{n}\end{bmatrix}^{T}$
\end_inset
是齐次线性方程组
\begin_inset Formula $Ax=0$
\end_inset
的一个非零解, 其中
\begin_inset Formula
\[
A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix},\quad m<n.
\]
\end_inset
令
\begin_inset Formula $\alpha_{i}=\begin{bmatrix}a_{i1} & a_{i2} & \cdots & a_{in}\end{bmatrix}^{T}$
\end_inset
, (
\begin_inset Formula $i=1,2,\cdots,m$
\end_inset
).
若
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{m}$
\end_inset
线性无关, 试判断
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{m},\beta$
\end_inset
的线性相关性.
\end_layout
\begin_layout Proof
根据线性相关/线性无关性的定义, 设常数
\begin_inset Formula $k_{1},k_{2},\cdots,k_{m},k$
\end_inset
使得
\begin_inset Formula
\begin{equation}
k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}+k\beta=0,\label{eq:2.2-1}
\end{equation}
\end_inset
下面验证这些
\begin_inset Formula $k_{1},k_{2},\cdots,k_{m},k$
\end_inset
是否只有零解 (对应向量组的线性无关性), 还是存在非零解
\begin_inset Formula $k_{1},k_{2},\cdots,k_{m},k$
\end_inset
(对应向量组的线性相关性).
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Proof
由已知, 矩阵
\begin_inset Formula
\[
A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}=\begin{bmatrix}\alpha_{1}^{T}\\
\alpha_{2}^{T}\\
\vdots\\
\alpha_{m}^{T}
\end{bmatrix},
\]
\end_inset
由于
\begin_inset Formula $\beta$
\end_inset
满足齐次线性方程组
\begin_inset Formula $Ax=0$
\end_inset
, 因此
\begin_inset Formula
\[
0=A\beta=\begin{bmatrix}\alpha_{1}^{T}\\
\alpha_{2}^{T}\\
\vdots\\
\alpha_{m}^{T}
\end{bmatrix}\beta=\begin{bmatrix}\alpha_{1}^{T}\beta\\
\alpha_{2}^{T}\beta\\
\vdots\\
\alpha_{m}^{T}\beta
\end{bmatrix}.
\]
\end_inset
于是对于任意的
\begin_inset Formula $i=1,2,\cdots,m$
\end_inset
, 有
\begin_inset Formula $\alpha_{i}^{T}\beta=0$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Proof
由方程 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:2.2-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 得
\begin_inset Formula
\[
k_{1}\alpha_{1}^{T}+k_{2}\alpha_{2}^{T}+\cdots+k_{m}\alpha_{m}^{T}+k\beta^{T}=0,
\]
\end_inset
对上式左右两边同时右乘
\begin_inset Formula $\beta$
\end_inset
, 得到
\begin_inset Formula $k\beta^{T}\beta=0$
\end_inset
, 由于
\begin_inset Formula $\beta\ne0$
\end_inset
, 所以必有
\begin_inset Formula $k=0$
\end_inset
.
于是上式变成
\begin_inset Formula
\[
k_{1}\alpha_{1}^{T}+k_{2}\alpha_{2}^{T}+\cdots+k_{m}\alpha_{m}^{T}=0,
\]
\end_inset
最后由
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{m}$
\end_inset
线性无关, 知
\begin_inset Formula $k_{1}=k_{2}=\cdots=k_{m}=0$
\end_inset
.
\end_layout
\begin_layout Proof
所以向量组
\begin_inset Formula $\alpha_{1},\alpha_{2},\cdots,\alpha_{m},\beta$
\end_inset
线性无关.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\end_body
\end_document
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )