Слияние кода завершено, страница обновится автоматически
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass beamer
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage[define-L-C-R]{nicematrix}
\usetheme[lw]{uantwerpen}
\AtBeginDocument{
\renewcommand\logopos{111.png}
\renewcommand\logoneg{111.png}
\renewcommand\logomonowhite{111.png}
\renewcommand\iconfile{111.png}
}
\setbeamertemplate{theorems}[numbered]
\AtBeginSection[]
{
\begin{frame}{章节内容}
\transfade%淡入淡出效果
\begin{multicols}{2}
\tableofcontents[sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
\end{multicols}
\addtocounter{framenumber}{-1} %目录页不计算页码
\end{frame}
}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options aspectratio = 1610, 11pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
实对称矩阵的对角化
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
引言
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
一个
\begin_inset Formula $n$
\end_inset
阶矩阵
\begin_inset Formula $A$
\end_inset
具备什么条件才能对角化? 这是一个比较复杂的问题.
本节我们仅对
\begin_inset Formula $A$
\end_inset
为实对称矩阵的情况进行讨论.
实对称矩阵具有许多一般矩阵所没有的特殊性质.
\end_layout
\end_deeper
\begin_layout Subsection
实对称矩阵的特征值问题
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
实对称矩阵的特征值问题
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Theorem
实对称矩阵的特征值都为实数.
\end_layout
\begin_layout Remark
对实对称矩阵
\begin_inset Formula $A$
\end_inset
, 因其特征值
\begin_inset Formula $\lambda_{i}$
\end_inset
为实数, 故方程组
\begin_inset Formula
\[
\left(A-\lambda_{i}E\right)X=0
\]
\end_inset
是实系数方程组, 由
\begin_inset Formula $\left|A-\lambda_{i}E\right|=0$
\end_inset
知它必有实的基础解系, 所以
\begin_inset Formula $A$
\end_inset
的特征向量可以取实向量.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
实对称矩阵的特征向量
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Theorem
设
\begin_inset Formula $\lambda_{1},\lambda_{2}$
\end_inset
是对称矩阵
\begin_inset Formula $A$
\end_inset
的两个特征值,
\begin_inset Formula $p_{1},p_{2}$
\end_inset
是对应的特征向量.
若
\begin_inset Formula $\lambda_{1}\neq\lambda_{2}$
\end_inset
, 则
\begin_inset Formula $p_{1}$
\end_inset
与
\begin_inset Formula $p_{2}$
\end_inset
正交.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Theorem
设
\begin_inset Formula $A$
\end_inset
为
\begin_inset Formula $n$
\end_inset
阶实对称矩阵,
\begin_inset Formula $\lambda$
\end_inset
是
\begin_inset Formula $A$
\end_inset
的特征方程的
\begin_inset Formula $k$
\end_inset
重根, 则矩阵
\begin_inset Formula $A-\lambda E$
\end_inset
的秩
\begin_inset Formula $r(A-\lambda E)=n-k$
\end_inset
, 从而对应特征值
\begin_inset Formula $\lambda$
\end_inset
恰有
\begin_inset Formula $k$
\end_inset
个线性无关的特征向量.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Theorem
设
\begin_inset Formula $A$
\end_inset
为
\begin_inset Formula $n$
\end_inset
阶实对称矩阵, 则必有正交矩阵
\begin_inset Formula $P$
\end_inset
,使
\begin_inset Formula
\[
P^{-1}AP=\Lambda,
\]
\end_inset
其中
\begin_inset Formula $\Lambda$
\end_inset
是以
\begin_inset Formula $A$
\end_inset
的
\begin_inset Formula $n$
\end_inset
个特征值为对角元素的对角矩阵.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
将实对称矩阵对角化的步骤
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
与上节
\bar under
将一般矩阵对角化的方法
\bar default
类似, 根据上述结论, 可求正交变换矩阵
\begin_inset Formula $P$
\end_inset
将实对称矩阵
\begin_inset Formula $A$
\end_inset
对角化的步骤为:
\end_layout
\begin_layout Standard
(1) 求出
\begin_inset Formula $A$
\end_inset
的全部特征值
\begin_inset Formula $\lambda_{1},\lambda_{2},\cdots,\lambda_{s}$
\end_inset
;
\end_layout
\begin_layout Standard
(2) 对每一个特征值
\begin_inset Formula $\lambda_{i}$
\end_inset
, 由
\begin_inset Formula $\left(\lambda_{i}E-A\right)X=0$
\end_inset
求出基础解系 (特征向量);
\end_layout
\begin_layout Standard
(3) 将基础解系 (特征向量) 正交化; 再单位化;
\end_layout
\begin_layout Standard
(4) 以这些单位向量作为列向量构成一个正交矩阵
\begin_inset Formula $P$
\end_inset
, 使
\begin_inset Formula
\[
P^{-1}AP=\Lambda.
\]
\end_inset
\end_layout
\begin_layout Remark
\begin_inset Formula $P$
\end_inset
中列向量的次序与矩阵
\begin_inset Formula $\Lambda$
\end_inset
对角线上的特征值的次序相对应.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
将实对称阵对角化
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Argument 1
status open
\begin_layout Plain Layout
E01
\end_layout
\end_inset
设实对称矩阵
\begin_inset Formula $A=\begin{bmatrix}1 & -2 & 0\\
-2 & 2 & -2\\
0 & -2 & 3
\end{bmatrix}$
\end_inset
, 求正交矩阵
\begin_inset Formula $P$
\end_inset
, 使
\begin_inset Formula $P^{-1}AP$
\end_inset
为对角矩阵.
\end_layout
\begin_layout Solution*
矩阵
\begin_inset Formula $A$
\end_inset
的特征方程为
\begin_inset Formula
\[
|\lambda E-A|=\begin{vmatrix}\lambda-1 & 2 & 0\\
2 & \lambda-2 & 2\\
0 & 2 & \lambda-3
\end{vmatrix}=0\Longrightarrow(\lambda+1)(\lambda-2)(\lambda-5)=0\Longrightarrow\lambda_{1}=-1,\ \lambda_{2}=2,\ \lambda_{3}=5.
\]
\end_inset
\end_layout
\begin_layout Solution*
当
\begin_inset Formula $\lambda_{1}=-1$
\end_inset
时, 由
\begin_inset Formula $(-E-A)x=0$
\end_inset
, 得基础解系
\begin_inset Formula $p_{1}=(2,2,1)^{T}$
\end_inset
;
\end_layout
\begin_layout Solution*
当
\begin_inset Formula $\lambda_{2}=2$
\end_inset
时, 由
\begin_inset Formula $(2E-A)x=0$
\end_inset
, 得基础解系
\begin_inset Formula $p_{2}=(2,-1,-2)^{T}$
\end_inset
;
\end_layout
\begin_layout Solution*
当
\begin_inset Formula $\lambda_{3}=5$
\end_inset
时, 由
\begin_inset Formula $(5E-A)x=0$
\end_inset
, 得基础解系
\begin_inset Formula $p_{3}=(1,-2,2)^{T}$
\end_inset
.
\end_layout
\begin_layout Solution*
不难验证
\begin_inset Formula $p_{1},p_{2},p_{3}$
\end_inset
是正交向量组, 把
\begin_inset Formula $p_{1},p_{2},p_{3}$
\end_inset
单位化, 得
\begin_inset Formula
\[
\eta_{1}=\frac{p_{1}}{\left\Vert p_{1}\right\Vert }=\begin{bmatrix}2/3\\
2/3\\
1/3
\end{bmatrix},\ \eta_{2}=\frac{p_{2}}{\left\Vert p_{2}\right\Vert }=\begin{bmatrix}2/3\\
-1/3\\
-2/3
\end{bmatrix},\ \eta_{3}=\frac{p_{3}}{\left\Vert p_{3}\right\Vert }=\begin{bmatrix}1/3\\
-2/3\\
2/3
\end{bmatrix}.
\]
\end_inset
令
\begin_inset Formula $P=\left(\eta_{1},\eta_{2},\eta_{3}\right)=\begin{bmatrix}2/3 & 2/3 & 1/3\\
2/3 & -1/3 & -2/3\\
1/3 & -2/3 & 2/3
\end{bmatrix}$
\end_inset
, 则
\begin_inset Formula $P^{-1}AP=P^{T}AP=\begin{bmatrix}-1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 5
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
将实对称阵对角化
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Argument 1
status open
\begin_layout Plain Layout
E02
\end_layout
\end_inset
设有对称矩阵
\begin_inset Formula $A=\begin{bmatrix}4 & 0 & 0\\
0 & 3 & 1\\
0 & 1 & 3
\end{bmatrix}$
\end_inset
, 试求出正交矩阵
\begin_inset Formula $P$
\end_inset
, 使
\begin_inset Formula $P^{-1}AP$
\end_inset
为对角阵.
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
|\lambda E-A|=\begin{vmatrix}\lambda-4 & 0 & 0\\
0 & \lambda-3 & -1\\
0 & -1 & \lambda-3
\end{vmatrix}=(\lambda-2)(4-\lambda)^{2}\Longrightarrow\lambda_{1}=2,\ \lambda_{2}=\lambda_{3}=4,
\]
\end_inset
\end_layout
\begin_layout Solution*
对
\begin_inset Formula $\lambda_{1}=2$
\end_inset
, 由
\begin_inset Formula $(2E-A)x=0\Longrightarrow$
\end_inset
基础解系
\begin_inset Formula $p_{1}=\begin{bmatrix}0\\
1\\
-1
\end{bmatrix}$
\end_inset
;
\end_layout
\begin_layout Solution*
对
\begin_inset Formula $\lambda_{2}=\lambda_{3}=4$
\end_inset
, 由
\begin_inset Formula $(4E-A)x=0\Longrightarrow$
\end_inset
基础解系
\begin_inset Formula $p_{2}=\begin{bmatrix}1\\
0\\
0
\end{bmatrix}$
\end_inset
,
\begin_inset Formula $p_{3}=\begin{bmatrix}0\\
1\\
1
\end{bmatrix}$
\end_inset
.
\begin_inset Formula $p_{2}$
\end_inset
与
\begin_inset Formula $p_{3}$
\end_inset
恰好正交, 所以
\begin_inset Formula $p_{1},p_{2},p_{3}$
\end_inset
两两正交.
再将
\begin_inset Formula $p_{1},p_{2},p_{3}$
\end_inset
单位化, 令
\begin_inset Formula $\eta_{i}=p_{i}/\left\Vert p_{i}\right\Vert $
\end_inset
, (
\begin_inset Formula $i=1,2,3$
\end_inset
), 得
\begin_inset Formula
\[
\eta_{1}=\begin{bmatrix}0\\
1/\sqrt{2}\\
-1/\sqrt{2}
\end{bmatrix},\ \eta_{2}=\begin{bmatrix}1\\
0\\
0
\end{bmatrix},\ \eta_{3}=\begin{bmatrix}0\\
1/\sqrt{2}\\
1/\sqrt{2}
\end{bmatrix},
\]
\end_inset
故所求正交矩阵
\begin_inset Formula
\[
P=\left(\eta_{1},\eta_{2},\eta_{3}\right)=\begin{bmatrix}0 & 1 & 0\\
1/\sqrt{2} & 0 & 1/\sqrt{2}\\
-1/\sqrt{2} & 0 & 1/\sqrt{2}
\end{bmatrix}\text{ 且 }P^{-1}AP=\begin{bmatrix}2 & 0 & 0\\
0 & 4 & 0\\
0 & 0 & 4
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
将实对称矩阵对角化
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
已知
\begin_inset Formula $A=\begin{bmatrix}2 & 0 & 0\\
0 & a & 2\\
0 & 2 & a
\end{bmatrix}$
\end_inset
, (其中
\begin_inset Formula $a>0$
\end_inset
), 有一特征值为
\begin_inset Formula $1$
\end_inset
, 求正交矩阵
\begin_inset Formula $P$
\end_inset
使得
\begin_inset Formula $P^{-1}AP$
\end_inset
为对角矩阵.
\end_layout
\begin_layout Solution*
\begin_inset Formula $A$
\end_inset
的特征多项式为
\begin_inset Formula
\[
|\lambda E-A|=\begin{vmatrix}\lambda-2 & 0 & 0\\
0 & \lambda-a & -2\\
0 & -2 & \lambda-a
\end{vmatrix}=(\lambda-2)(\lambda-a+2)(\lambda-a-2),
\]
\end_inset
由于
\begin_inset Formula $A$
\end_inset
有特征值
\begin_inset Formula $1$
\end_inset
, 故有两种情形:
\end_layout
\begin_layout Solution*
若
\begin_inset Formula $a-2=1$
\end_inset
, 则
\begin_inset Formula $a=3$
\end_inset
; 若
\begin_inset Formula $a+2=1$
\end_inset
, 则
\begin_inset Formula $a=-1$
\end_inset
.
但
\begin_inset Formula $a>0$
\end_inset
, 所以只能是
\begin_inset Formula $a=3$
\end_inset
.
从而得
\begin_inset Formula $A$
\end_inset
的特征值为
\begin_inset Formula $2,1,5$
\end_inset
.
\end_layout
\begin_layout Solution*
对
\begin_inset Formula $\lambda_{1}=2$
\end_inset
, 由
\begin_inset Formula $(2E-A)x=0$
\end_inset
, 得基础解系
\begin_inset Formula $p_{1}=(1,0,0)^{T}$
\end_inset
;
\end_layout
\begin_layout Solution*
对
\begin_inset Formula $\lambda_{2}=1$
\end_inset
, 由
\begin_inset Formula $(E-A)x=0$
\end_inset
, 得基础解系
\begin_inset Formula $p_{2}=(0,1,-1)^{T}$
\end_inset
;
\end_layout
\begin_layout Solution*
对
\begin_inset Formula $\lambda_{3}=5$
\end_inset
, 由
\begin_inset Formula $(5E-A)x=0$
\end_inset
, 得基础解系
\begin_inset Formula $p_{3}=(1,0,0)^{T}$
\end_inset
;
\end_layout
\begin_layout Solution*
因实对称矩阵的
\bar under
属于不同特征值的特征向量
\bar default
必相互正交, 故特征向量
\begin_inset Formula $p_{1},p_{2},p_{3}$
\end_inset
已是正交向量组, 因此只需将其单位化:
\end_layout
\begin_layout Solution*
\begin_inset Formula
\[
\eta_{1}=(1,0,0)^{T};\ \eta_{2}=\left(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)^{T};\ \eta_{3}=\left(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)^{T};
\]
\end_inset
令
\begin_inset Formula $P=\left(\eta_{1},\eta_{2},\eta_{3}\right)=\begin{bmatrix}1 & 0 & 0\\
0 & 1/\sqrt{2} & 1/\sqrt{2}\\
0 & -1/\sqrt{2} & 1/\sqrt{2}
\end{bmatrix}$
\end_inset
, 则
\begin_inset Formula $P^{-1}AP=\begin{bmatrix}2 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 5
\end{bmatrix}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求矩阵的幂
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设
\begin_inset Formula $A=\begin{bmatrix}2 & -1\\
-1 & 2
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $A^{n}$
\end_inset
.
\end_layout
\begin_layout Solution*
因
\begin_inset Formula $A$
\end_inset
对称, 故
\begin_inset Formula $A$
\end_inset
可对角化, 即有可逆矩阵
\begin_inset Formula $P$
\end_inset
及对角阵
\begin_inset Formula $\Lambda$
\end_inset
, 使
\begin_inset Formula $P^{-1}AP=\Lambda$
\end_inset
.
于是
\begin_inset Formula
\[
A=P\Lambda P^{-1}\Longrightarrow A^{n}=P\Lambda^{n}P^{-1}.
\]
\end_inset
由
\begin_inset Formula
\[
|A-\lambda E|=\begin{vmatrix}2-\lambda & -1\\
-1 & 2-\lambda
\end{vmatrix}=\lambda^{2}-4\lambda+3=(\lambda-1)(\lambda-3),
\]
\end_inset
得
\begin_inset Formula $A$
\end_inset
的特征值
\begin_inset Formula $\lambda_{1}=1$
\end_inset
,
\begin_inset Formula $\lambda_{2}=3$
\end_inset
.
于是
\begin_inset Formula
\[
\Lambda=\begin{bmatrix}1 & 0\\
0 & 3
\end{bmatrix},\ \Lambda^{n}=\begin{bmatrix}1 & 0\\
0 & 3^{n}
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Solution*
对应
\begin_inset Formula $\lambda_{1}=1$
\end_inset
, 由
\begin_inset Formula $(A-E)x=0$
\end_inset
, 解得对应特征向量
\begin_inset Formula $P_{1}=\begin{bmatrix}1\\
1
\end{bmatrix}$
\end_inset
;
\end_layout
\begin_layout Solution*
对应
\begin_inset Formula $\lambda_{2}=3$
\end_inset
, 由
\begin_inset Formula $(A-3E)x=0$
\end_inset
, 解得对应特征向量
\begin_inset Formula $P_{2}=\begin{bmatrix}1\\
-1
\end{bmatrix}$
\end_inset
.
\end_layout
\begin_layout Solution*
令
\begin_inset Formula $P=\left(p_{1},p_{2}\right)=\begin{bmatrix}1 & 1\\
1 & -1
\end{bmatrix}$
\end_inset
, 求出
\begin_inset Formula $P^{-1}=\frac{1}{2}\begin{bmatrix}1 & 1\\
1 & -1
\end{bmatrix}$
\end_inset
.
于是
\begin_inset Formula
\[
A^{n}=P\Lambda^{n}P^{-1}=\frac{1}{2}\begin{bmatrix}1 & 1\\
1 & -1
\end{bmatrix}\begin{bmatrix}1 & 0\\
0 & 3^{n}
\end{bmatrix}\begin{bmatrix}1 & 1\\
1 & -1
\end{bmatrix}=\frac{1}{2}\begin{bmatrix}1+3^{n} & 1-3^{n}\\
1-3^{n} & 1+3^{n}
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Subsection
作业
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
作业
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Problem
设实对称矩阵
\begin_inset Formula $A=\begin{bmatrix}2 & -2 & 0\\
-2 & 1 & -2\\
0 & -2 & 0
\end{bmatrix}$
\end_inset
, 试求出正交矩阵
\begin_inset Formula $P$
\end_inset
, 使
\begin_inset Formula $P^{-1}AP$
\end_inset
为对角阵.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
设
\begin_inset Formula $n$
\end_inset
阶实对称矩阵
\begin_inset Formula $A$
\end_inset
满足
\begin_inset Formula $A^{2}=A$
\end_inset
, 且
\begin_inset Formula $A$
\end_inset
的秩为
\begin_inset Formula $r$
\end_inset
, 试求行列式
\begin_inset Formula $\mathrm{det}\left(2E-A\right)$
\end_inset
的值.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\end_body
\end_document
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )