Слияние кода завершено, страница обновится автоматически
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass beamer
\begin_preamble
% 如果没有这一句命令,XeTeX会出错,原因参见
% http://bbs.ctex.org/viewthread.php?tid=60547
\DeclareRobustCommand\nobreakspace{\leavevmode\nobreak\ }
% \usepackage{tkz-euclide}
% \usetkzobj{all}
\usepackage{multicol}
\usepackage[define-L-C-R]{nicematrix}
\usetheme[lw]{uantwerpen}
\AtBeginDocument{
\renewcommand\logopos{111.png}
\renewcommand\logoneg{111.png}
\renewcommand\logomonowhite{111.png}
\renewcommand\iconfile{111.png}
}
\setbeamertemplate{theorems}[numbered]
\AtBeginSection[]
{
\begin{frame}{章节内容}
\transfade%淡入淡出效果
\begin{multicols}{2}
\tableofcontents[sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
\end{multicols}
\addtocounter{framenumber}{-1} %目录页不计算页码
\end{frame}
}
\usepackage{amsmath, amsfonts, amssymb, mathtools, yhmath, mathrsfs}
% http://ctan.org/pkg/extarrows
% long equal sign
\usepackage{extarrows}
\DeclareMathOperator{\sech}{sech}
\DeclareMathOperator{\curl}{curl}
%\everymath{\color{blue}\everymath{}}
%\everymath\expandafter{\color{blue}\displaystyle}
%\everydisplay\expandafter{\the\everydisplay \color{red}}
\def\degree{^\circ}
\def\bt{\begin{theorem}}
\def\et{\end{theorem}}
\def\bl{\begin{lemma}}
\def\el{\end{lemma}}
\def\bc{\begin{corrolary}}
\def\ec{\end{corrolary}}
\def\ba{\begin{proof}[解]}
\def\ea{\end{proof}}
\def\ue{\mathrm{e}}
\def\ud{\,\mathrm{d}}
\def\GF{\mathrm{GF}}
\def\ui{\mathrm{i}}
\def\Re{\mathrm{Re}}
\def\Im{\mathrm{Im}}
\def\uRes{\mathrm{Res}}
\def\diag{\,\mathrm{diag}\,}
\def\be{\begin{equation}}
\def\ee{\end{equation}}
\def\bee{\begin{equation*}}
\def\eee{\end{equation*}}
\def\sumcyc{\sum\limits_{cyc}}
\def\prodcyc{\prod\limits_{cyc}}
\def\i{\infty}
\def\a{\alpha}
\def\b{\beta}
\def\g{\gamma}
\def\d{\delta}
\def\l{\lambda}
\def\m{\mu}
\def\t{\theta}
\def\p{\partial}
\def\wc{\rightharpoonup}
\def\udiv{\mathrm{div}}
\def\diam{\mathrm{diam}}
\def\dist{\mathrm{dist}}
\def\uloc{\mathrm{loc}}
\def\uLip{\mathrm{Lip}}
\def\ucurl{\mathrm{curl}}
\def\usupp{\mathrm{supp}}
\def\uspt{\mathrm{spt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\providecommand{\abs}[1]{\left\lvert#1\right\rvert}
\providecommand{\norm}[1]{\left\Vert#1\right\Vert}
\providecommand{\paren}[1]{\left(#1\right)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\FF}{\mathbb{F}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\WW}{\mathbb{W}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\pNN}{\mathbb{N}_{+}}
\newcommand{\cZ}{\mathcal{Z}}
\newcommand{\cM}{\mathcal{M}}
\newcommand{\cS}{\mathcal{S}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\cW}{\mathcal{W}}
\newcommand{\eqdef}{\xlongequal{\text{def}}}%
\newcommand{\eqexdef}{\xlongequal[\text{存在}]{\text{记为}}}%
\end_preamble
\options aspectratio = 1610, 11pt, UTF8
\use_default_options true
\begin_modules
theorems-ams
theorems-sec
\end_modules
\maintain_unincluded_children false
\language chinese-simplified
\language_package default
\inputencoding utf8-cjk
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\font_cjk gbsn
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format pdf2
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks true
\pdf_pdfborder true
\pdf_colorlinks true
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 2
\use_package mathdots 1
\use_package mathtools 2
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
二次型及其矩阵
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
引言
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
在解析几何中, 为了便于研究二次曲线
\begin_inset Formula
\[
ax^{2}+bxy+cy^{2}=1
\]
\end_inset
的几何性质, 可以选择适当的坐标旋转变换
\begin_inset Formula
\[
\begin{cases}
x=x^{\prime}\cos\theta-y^{\prime}\sin\theta,\\
y=x^{\prime}\sin\theta+y^{\prime}\cos\theta,
\end{cases}
\]
\end_inset
把方程化为标准形式
\begin_inset Formula
\[
mx^{\prime2}+cy^{\prime2}=1.
\]
\end_inset
\end_layout
\begin_layout Standard
这类问题具有普遍性, 在许多理论问题和实际问题中常会遇到, 本章将把这类问题一般化, 讨论
\begin_inset Formula $n$
\end_inset
个变量的二次多项式的化简问题.
\end_layout
\end_deeper
\begin_layout Subsection
二次型的概念
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
二次型的概念
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
含有
\begin_inset Formula $n$
\end_inset
个变量
\begin_inset Formula $x_{1},x_{2},\cdots,x_{n}$
\end_inset
的二次齐次函数
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO: 齐次函数的定义
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{aligned}f\left(x_{1},x_{2},\cdots,x_{n}\right) & =a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+a_{33}x_{3}^{2}+\cdots+a_{nn}x_{n}^{2}\\
& \quad+2a_{12}x_{1}x_{2}+2a_{13}x_{1}x_{3}+\cdots+2a_{1n}x_{1}x_{n}\\
& \quad\enskip\phantom{+2a_{12}x_{1}x_{2}}+2a_{23}x_{2}x_{3}+\cdots+2a_{2n}x_{2}x_{n}\\
& \quad\enskip\phantom{+2a_{12}x_{1}x_{2}+2a_{13}x_{1}x_{3}}+\cdots+2a_{n-1,n}x_{n-1}x_{n},
\end{aligned}
\]
\end_inset
称为
\series bold
二次型
\series default
.
当
\begin_inset Formula $a_{ij}$
\end_inset
为复数时,
\begin_inset Formula $f$
\end_inset
称为
\series bold
复二次型
\series default
; 当
\begin_inset Formula $a_{ij}$
\end_inset
为实数时,
\begin_inset Formula $f$
\end_inset
称为
\series bold
实二次型
\series default
.
在本章中只讨论实二次型.
\end_layout
\begin_layout Definition
只含有平方项的二次型
\begin_inset Formula $f=k_{1}y_{1}^{2}+k_{2}y_{2}^{2}+\cdots+k_{n}y_{n}^{2}$
\end_inset
称为
\series bold
二次型的标准型
\series default
(或
\series bold
二次型的法式
\series default
).
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
二次型的例子
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\end_layout
\begin_deeper
\begin_layout Enumerate
\begin_inset Formula $f(x,y)=x^{2}+3xy+y^{2}$
\end_inset
是一个含有
\begin_inset Formula $2$
\end_inset
个变量的实二次型.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $f(x,y,z)=3x^{2}+2xy+\sqrt{2}xz-y^{2}-4yz+5z^{2}$
\end_inset
是一个含有
\begin_inset Formula $3$
\end_inset
个变量的实二次型.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $f\left(x_{1},x_{2},x_{3},x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}$
\end_inset
是一个含有
\begin_inset Formula $4$
\end_inset
个变量的实二次型.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $f\left(x_{1},x_{2},x_{3},x_{4}\right)=x_{1}x_{2}+2x_{1}x_{3}-4x_{1}x_{4}+3x_{2}x_{4}$
\end_inset
是一个含有
\begin_inset Formula $4$
\end_inset
个变量的实二次型.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $f(x,y)=x^{2}+xy-y^{2}+5x+1$
\end_inset
不是一个实二次型, 因为它含有一次项
\begin_inset Formula $5x$
\end_inset
及常数项
\begin_inset Formula $1$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $f\left(x_{1},x_{2},x_{3}\right)=x_{1}^{3}+x_{1}x_{2}+x_{1}x_{3}$
\end_inset
不是一个实二次型, 因为它含有
\begin_inset Formula $3$
\end_inset
次项
\begin_inset Formula $x_{1}^{3}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Formula $f(x,y)=x^{2}+iy^{2}$
\end_inset
, (
\begin_inset Formula $i=\sqrt{-1}$
\end_inset
), 不是一个实二次型, 因为
\begin_inset Formula $i$
\end_inset
是虚数, 但它是一个复二次型.
\end_layout
\end_deeper
\end_deeper
\begin_layout Subsection
二次型的矩阵
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
二次型的矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Fact*
取
\begin_inset Formula $a_{ji}=a_{ij}$
\end_inset
, 则
\begin_inset Formula $2a_{ij}x_{i}x_{j}=a_{ij}x_{i}x_{j}+a_{ji}x_{j}x_{i}$
\end_inset
, 于是
\end_layout
\begin_layout Fact*
\begin_inset Formula
\[
\begin{aligned}f\left(x_{1},x_{2},\cdots,x_{n}\right) & =a_{11}x_{1}^{2}+a_{12}x_{1}x_{2}+\cdots+a_{1n}x_{1}x_{n}\\
& \quad+a_{21}x_{2}x_{1}+a_{22}x_{2}^{2}+\cdots+a_{2n}x_{2}x_{n}\\
& \quad+\cdots\cdots\cdots\cdots\cdots\cdots+\\
& \quad+a_{n1}x_{n}x_{1}+a_{n2}x_{n}x_{2}+\cdots+a_{nn}x_{n}^{2}\\
& =\sum_{i,j=1}^{n}a_{ij}x_{i}x_{j}.
\end{aligned}
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Fact*
仍旧取
\begin_inset Formula $a_{ji}=a_{ij}$
\end_inset
, 但对上面的函数采取矩阵运算的语言来表达如下
\begin_inset Formula
\[
\begin{aligned}f\left(x_{1},x_{2},\cdots,x_{n}\right) & =x_{1}\left(a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\right)\\
& \quad+x_{2}\left(a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\right)\\
& \quad+\cdots\cdots\cdots\cdots\cdots\cdots+\\
& \quad+x_{n}\left(a_{n1}x_{1}+a_{n2}x_{2}+\cdots+a_{nn}x_{n}\right)\\
& =\begin{bmatrix}x_{1} & x_{2} & \cdots & x_{n}\end{bmatrix}\begin{bmatrix}a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\\
a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\\
\cdots\cdots\cdots\cdots\cdots\cdots\\
a_{n1}x_{1}+a_{n2}x_{2}+\cdots+a_{nn}x_{n}
\end{bmatrix}\\
& =\begin{bmatrix}x_{1} & x_{2} & \cdots & x_{n}\end{bmatrix}\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}\begin{bmatrix}x_{1}\\
x_{2}\\
\vdots\\
x_{n}
\end{bmatrix}\\
& =X^{T}AX,
\end{aligned}
\]
\end_inset
\end_layout
\begin_layout Definition
简而言之, 二次型
\begin_inset Formula
\begin{align*}
f\left(x_{1},x_{2},\cdots,x_{n}\right) & =\begin{bmatrix}x_{1} & x_{2} & \cdots & x_{n}\end{bmatrix}\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}\begin{bmatrix}x_{1}\\
x_{2}\\
\vdots\\
x_{n}
\end{bmatrix}=X^{T}AX,
\end{align*}
\end_inset
其中
\begin_inset Formula
\[
X=\begin{bmatrix}x_{1}\\
x_{2}\\
\vdots\\
x_{n}
\end{bmatrix},\quad A=\begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n}\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}.
\]
\end_inset
称
\series bold
\color red
\begin_inset Formula $f(x)=X^{T}AX$
\end_inset
为二次型的矩阵形式
\series default
\color inherit
, 其中
\series bold
\color red
实对称矩阵
\begin_inset Formula $A$
\end_inset
称为该二次型的矩阵
\series default
\color inherit
,
\series bold
\color red
二次型
\begin_inset Formula $f$
\end_inset
称为实对称矩阵
\begin_inset Formula $A$
\end_inset
的二次型
\series default
\color inherit
,
\series bold
\color red
实对称矩阵
\begin_inset Formula $A$
\end_inset
的秩称为二次型的秩
\series default
\color inherit
.
于是, 二次型
\begin_inset Formula $f$
\end_inset
与其实对称矩阵
\begin_inset Formula $A$
\end_inset
之间有一一对应关系.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 3
status open
\begin_layout Plain Layout
allowframebreaks
\end_layout
\end_inset
\begin_inset Argument 4
status open
\begin_layout Plain Layout
给出二次型的矩阵
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
写出下列是二次型相应的对称阵.
\end_layout
\begin_layout Example
(1)
\begin_inset Formula $f(x,y)=x^{2}+3xy+y^{2}=x^{2}+\frac{3}{2}xy+\frac{3}{2}xy+y^{2}$
\end_inset
, 其矩阵为
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{bmatrix}1 & 3/2\\
3/2 & 1
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Example
(2)
\begin_inset Formula $f(x,y,z)=3x^{2}+2xy+\sqrt{2}xz-y^{2}-4yz+5z^{2}=3x^{2}+xy+\frac{\sqrt{2}}{2}xz+xy-y^{2}-2xy+\frac{\sqrt{2}}{2}xz-2yz+5z^{2}$
\end_inset
, 其相应的实对称阵为
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{bmatrix}3 & 1 & \sqrt{2}/2\\
1 & -1 & -2\\
\sqrt{2}/2 & -2 & 5
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Example
(3)
\begin_inset Formula $f\left(x_{1},x_{2},x_{3},x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}$
\end_inset
, 相应的实对称阵是一个对角阵:
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{bmatrix}1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & -1
\end{bmatrix}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Example
(4)
\begin_inset Formula $f\left(x_{1},x_{2},x_{3},x_{4}\right)=x_{1}x_{2}+2x_{1}x_{3}-4x_{1}x_{4}+3x_{2}x_{4}$
\end_inset
相应的对称阵为
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
vspace{-3mm}
\end_layout
\end_inset
\begin_inset Formula
\[
\begin{bmatrix}0 & 1/2 & 1 & -2\\
1/2 & 0 & 0 & 3/2\\
1 & 0 & 0 & 0\\
-2 & 3/2 & 0 & 0
\end{bmatrix}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
给出实对称阵对应的二次型
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设有实对称矩阵
\begin_inset Formula $A=\begin{bmatrix}-1 & 1 & 0\\
1 & 0 & -1/2\\
0 & -1/2 & \sqrt{2}
\end{bmatrix}$
\end_inset
, 求
\begin_inset Formula $A$
\end_inset
对应的实二次型.
\end_layout
\begin_layout Solution*
由
\begin_inset Formula $A$
\end_inset
是三阶阵, 故有
\begin_inset Formula $3$
\end_inset
个变量, 则实二次型为
\begin_inset Formula
\[
f\left(x_{1},x_{2},x_{3}\right)=\begin{bmatrix}x_{1} & x_{2} & x_{3}\end{bmatrix}\begin{bmatrix}-1 & 1 & 0\\
1 & 0 & -1/2\\
0 & -1/2 & \sqrt{2}
\end{bmatrix}\begin{bmatrix}x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}=-x_{1}^{2}+2x_{1}x_{2}-x_{2}x_{3}+\sqrt{2}x_{3}^{2}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
实对称阵与二次型的相互表示
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Argument 1
status open
\begin_layout Plain Layout
E01
\end_layout
\end_inset
二次型
\begin_inset Formula $x_{1}x_{2}+x_{1}x_{3}+2x_{2}^{2}-3x_{2}x_{3}$
\end_inset
的矩阵
\begin_inset Formula
\[
A=\begin{bmatrix}0 & 1/2 & 1/2\\
1/2 & 2 & -3/2\\
1/2 & -3/2 & 0
\end{bmatrix}.
\]
\end_inset
反之, 对称矩阵
\begin_inset Formula $A=\begin{bmatrix}0 & 1/2 & 1/2\\
1/2 & 2 & -3/2\\
1/2 & -3/2 & 0
\end{bmatrix}$
\end_inset
所对应的二次型是
\begin_inset Formula
\[
x^{T}Ax=\begin{bmatrix}x_{1} & x_{2} & x_{3}\end{bmatrix}\begin{bmatrix}0 & 1/2 & 1/2\\
1/2 & 2 & -3/2\\
1/2 & -3/2 & 0
\end{bmatrix}\begin{bmatrix}x_{1}\\
x_{2}\\
x_{3}
\end{bmatrix}=x_{1}x_{2}+x_{1}x_{3}+2x_{2}^{2}-3x_{2}x_{3}.
\]
\end_inset
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
求二次型的秩
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
\begin_inset Argument 1
status open
\begin_layout Plain Layout
E02
\end_layout
\end_inset
求二次型
\begin_inset Formula $f\left(x_{1},x_{2},x_{3}\right)=x_{1}^{2}-4x_{1}x_{2}+2x_{1}x_{3}-2x_{2}^{2}+6x_{3}^{2}$
\end_inset
的秩.
\end_layout
\begin_layout Solution*
先求二次型的矩阵,
\begin_inset Formula
\[
f\left(x_{1},x_{2},x_{3}\right)=x_{1}^{2}-2x_{1}x_{2}+x_{1}x_{3}-2x_{2}x_{1}-2x_{2}^{2}+0x_{2}x_{3}+x_{3}x_{1}+0x_{3}x_{2}+6x_{3}^{2}.
\]
\end_inset
所以
\begin_inset Formula $A=\begin{bmatrix}1 & -2 & 1\\
-2 & -2 & 0\\
1 & 0 & 6
\end{bmatrix}$
\end_inset
, 对
\begin_inset Formula $A$
\end_inset
作初等变换
\begin_inset Formula
\[
A\longrightarrow\begin{bmatrix}1 & -2 & 1\\
0 & -6 & 2\\
0 & 2 & 5
\end{bmatrix}\longrightarrow\begin{bmatrix}1 & -2 & 1\\
0 & 2 & 5\\
0 & 0 & 17
\end{bmatrix},
\]
\end_inset
即
\begin_inset Formula $r(A)=3$
\end_inset
, 所以二次型的秩为
\begin_inset Formula $3$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
矩阵的合同
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Definition
设
\begin_inset Formula $A,B$
\end_inset
为两个
\begin_inset Formula $n$
\end_inset
阶矩阵, 如果存在
\begin_inset Formula $n$
\end_inset
阶非奇异矩阵
\begin_inset Formula $C$
\end_inset
, 使得
\begin_inset Formula $C^{T}AC=B$
\end_inset
, 则称
\series bold
矩阵
\begin_inset Formula $A$
\end_inset
合同于矩阵
\begin_inset Formula $B$
\end_inset
\series default
, 或
\series bold
\begin_inset Formula $A$
\end_inset
与
\begin_inset Formula $B$
\end_inset
合同
\series default
, 记为
\color red
\begin_inset Formula $A\cong B$
\end_inset
\color inherit
.
\end_layout
\begin_layout Standard
易见, 二次型
\begin_inset Formula $f\left(x_{1},x_{2},\cdots,x_{n}\right)=X^{T}AX$
\end_inset
的矩阵
\begin_inset Formula $A$
\end_inset
与经过非退化线性变换
\begin_inset Formula $X=CY$
\end_inset
得到的二次型的矩阵
\begin_inset Formula $B=C^{T}AC$
\end_inset
是合同的.
\end_layout
\begin_layout Fact*
矩阵的合同关系基本性质:
\end_layout
\begin_layout Fact*
(1) 反身性: 对任意方阵
\begin_inset Formula $A$
\end_inset
,
\begin_inset Formula $A\cong A$
\end_inset
; (因为
\begin_inset Formula $E^{T}AE=A$
\end_inset
);
\end_layout
\begin_layout Fact*
(2) 对称性: 若
\begin_inset Formula $A\cong B$
\end_inset
, 则
\begin_inset Formula $B\cong A$
\end_inset
;
\end_layout
\begin_layout Fact*
(3) 传递性 若
\begin_inset Formula $A\cong B$
\end_inset
,
\begin_inset Formula $B\cong C$
\end_inset
, 则
\begin_inset Formula $A\cong C$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Frame
\begin_inset Argument 4
status open
\begin_layout Plain Layout
对二次型做线性变换后的新二次型
\end_layout
\end_inset
\end_layout
\begin_deeper
\begin_layout Example
设二次型
\begin_inset Formula $f\left(x_{1},x_{2},x_{3}\right)=2x_{1}x_{2}-4x_{1}x_{3}+10x_{2}x_{3}$
\end_inset
, 且
\begin_inset Formula
\begin{equation}
\begin{cases}
x_{1}=y_{1}-y_{2}-5y_{3},\\
x_{2}=y_{1}+y_{2}+2y_{3},\\
x_{3}=y_{3}.
\end{cases}\label{eq:5.1-1}
\end{equation}
\end_inset
求经过上述线性变换后新的二次型.
\end_layout
\begin_layout Solution*
因
\begin_inset Formula $f\left(x_{1},x_{2},x_{3}\right)$
\end_inset
对应的矩阵为
\begin_inset Formula $A=\begin{bmatrix}0 & 1 & -2\\
1 & 0 & 5\\
-2 & 5 & 0
\end{bmatrix}$
\end_inset
.
而变换 (
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:5.1-1"
plural "false"
caps "false"
noprefix "false"
\end_inset
) 所决定的变换矩阵
\begin_inset Formula $C=\begin{bmatrix}1 & -1 & -5\\
1 & 1 & 2\\
0 & 0 & 1
\end{bmatrix}$
\end_inset
,
\begin_inset Formula
\[
C^{T}AC=\begin{bmatrix}1 & 1 & 0\\
-1 & 1 & 0\\
-5 & 2 & 1
\end{bmatrix}\begin{bmatrix}0 & 1 & -2\\
1 & 0 & 5\\
-2 & 5 & 0
\end{bmatrix}\begin{bmatrix}1 & -1 & -5\\
1 & 1 & 2\\
0 & 0 & 1
\end{bmatrix}=\begin{bmatrix}2 & 0 & 0\\
0 & -2 & 0\\
0 & 0 & 20
\end{bmatrix}.
\]
\end_inset
于是新的二次型为
\begin_inset Formula $2y_{1}^{2}-2y_{2}^{2}+20y_{3}^{2}$
\end_inset
.
\end_layout
\end_deeper
\begin_layout Frame
\end_layout
\end_body
\end_document
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )