1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/open-mmlab-mmflow

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
README.md 4.8 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
Miao Zheng Отправлено 26.01.2022 19:23 8dcbe6b

MaskFlowNet

MaskFlownet: Asymmetric Feature Matching with Learnable Occlusion Mask

Abstract

Feature warping is a core technique in optical flow estimation; however, the ambiguity caused by occluded areas during warping is a major problem that remains unsolved. In this paper, we propose an asymmetric occlusionaware feature matching module, which can learn a rough occlusion mask that filters useless (occluded) areas immediately after feature warping without any explicit supervision. The proposed module can be easily integrated into end-to-end network architectures and enjoys performance gains while introducing negligible computational cost. The learned occlusion mask can be further fed into a subsequent network cascade with dual feature pyramids with which we achieve state-of-the-art performance. At the time of submission, our method, called MaskFlownet, surpasses all published optical flow methods on the MPI Sintel, KITTI 2012 and 2015 benchmarks. Code is available at https://github.com/microsoft/MaskFlownet.

Results and Models

Models Training datasets Flying Chairs Sintel (training) KITTI2012 (training) KITTI2015 (training) Log Config Download
clean final EPE Fl-all
MaskFlowNet-S Flying Chairs 1.54 - - - - log Config Model
MaskFlowNet-S Flying Chairs + Flying Thing3d - 2.30 3.73 3.94 29.70% log Config Model
MaskFlowNet Flying Chairs 1.37 - - - - log Config Model
MaskFlowNet Flying Chairs + Flying Thing3d subset - 2.23 3.70 3.82 29.26% log Config Model

Citation

@inproceedings{zhao2020maskflownet,
  title={Maskflownet: Asymmetric feature matching with learnable occlusion mask},
  author={Zhao, Shengyu and Sheng, Yilun and Dong, Yue and Chang, Eric I and Xu, Yan and others},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6278--6287},
  year={2020}
}

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/open-mmlab-mmflow.git
git@api.gitlife.ru:oschina-mirror/open-mmlab-mmflow.git
oschina-mirror
open-mmlab-mmflow
open-mmlab-mmflow
master