1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/paddlepaddle-PaddleClas

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
metrics.py 23 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
zhenming lin Отправлено 08.09.2023 11:17 98935e0
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from cmath import nan
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
from easydict import EasyDict
from ppcls.metric.avg_metrics import AvgMetrics
from ppcls.utils.misc import AverageMeter, AttrMeter
from ppcls.utils import logger
class TopkAcc(AvgMetrics):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.reset()
self.warned = False
def reset(self):
self.avg_meters = {
f"top{k}": AverageMeter(f"top{k}")
for k in self.topk
}
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
output_dims = x.shape[-1]
metric_dict = dict()
for idx, k in enumerate(self.topk):
if output_dims < k:
if not self.warned:
msg = f"The output dims({output_dims}) is less than k({k}), so the Top-{k} metric is meaningless."
logger.warning(msg)
self.warned = True
metric_dict[f"top{k}"] = 1
else:
metric_dict[f"top{k}"] = paddle.metric.accuracy(x, label, k=k)
self.avg_meters[f"top{k}"].update(metric_dict[f"top{k}"],
x.shape[0])
return metric_dict
class mAP(nn.Layer):
def __init__(self, descending=True):
super().__init__()
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
num_rel = paddle.sum(equal_flag, axis=1)
num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
num_rel_index = paddle.nonzero(num_rel.astype("int"))
num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
if paddle.numel(num_rel_index).item() == 0:
metric_dict["mAP"] = np.nan
return metric_dict
equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
acc_sum = paddle.cumsum(equal_flag, axis=1)
div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
precision = paddle.divide(acc_sum, div)
#calc map
precision_mask = paddle.multiply(equal_flag, precision)
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag,
axis=1)
metric_dict["mAP"] = float(paddle.mean(ap))
return metric_dict
class mINP(nn.Layer):
def __init__(self, descending=True):
super().__init__()
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.indechmx_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
num_rel = paddle.sum(equal_flag, axis=1)
num_rel = paddle.greater_than(num_rel, paddle.to_tensor(0.))
num_rel_index = paddle.nonzero(num_rel.astype("int"))
num_rel_index = paddle.reshape(num_rel_index, [num_rel_index.shape[0]])
equal_flag = paddle.index_select(equal_flag, num_rel_index, axis=0)
#do accumulative sum
div = paddle.arange(equal_flag.shape[1]).astype("float32") + 2
minus = paddle.divide(equal_flag, div)
auxilary = paddle.subtract(equal_flag, minus)
hard_index = paddle.argmax(auxilary, axis=1).astype("float32")
all_INP = paddle.divide(paddle.sum(equal_flag, axis=1), hard_index)
mINP = paddle.mean(all_INP)
metric_dict["mINP"] = float(mINP)
return metric_dict
class TprAtFpr(nn.Layer):
def __init__(self, max_fpr=1 / 1000.):
super().__init__()
self.gt_pos_score_list = []
self.gt_neg_score_list = []
self.softmax = nn.Softmax(axis=-1)
self.max_fpr = max_fpr
self.max_tpr = 0.
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
x = self.softmax(x)
for i, label_i in enumerate(label):
if label_i[0] == 0:
self.gt_neg_score_list.append(x[i][1].numpy())
else:
self.gt_pos_score_list.append(x[i][1].numpy())
return {}
def reset(self):
self.gt_pos_score_list = []
self.gt_neg_score_list = []
self.max_tpr = 0.
@property
def avg(self):
return self.max_tpr
@property
def avg_info(self):
max_tpr = 0.
result = ""
gt_pos_score_list = np.array(self.gt_pos_score_list)
gt_neg_score_list = np.array(self.gt_neg_score_list)
for i in range(0, 10000):
threshold = i / 10000.
if len(gt_pos_score_list) == 0:
continue
tpr = np.sum(
gt_pos_score_list > threshold) / len(gt_pos_score_list)
if len(gt_neg_score_list) == 0 and tpr > max_tpr:
max_tpr = tpr
result = "threshold: {}, fpr: 0.0, tpr: {:.5f}".format(
threshold, tpr)
msg = f"The number of negative samples is 0, please add negative samples."
logger.warning(msg)
fpr = np.sum(
gt_neg_score_list > threshold) / len(gt_neg_score_list)
if fpr <= self.max_fpr and tpr > max_tpr:
max_tpr = tpr
result = "threshold: {}, fpr: {}, tpr: {:.5f}".format(
threshold, fpr, tpr)
self.max_tpr = max_tpr
return result
class MultilabelMeanAccuracy(nn.Layer):
def __init__(self,
start_threshold=0.4,
num_iterations=10,
end_threshold=0.9):
super().__init__()
self.start_threshold = start_threshold
self.num_iterations = num_iterations
self.end_threshold = end_threshold
self.gt_all_score_list = []
self.gt_label_score_list = []
self.max_acc = 0.
def forward(self, x, label):
if isinstance(x, dict):
x = x["logits"]
x = F.sigmoid(x)
label = label[:, 0, :]
for i in range(len(x)):
self.gt_all_score_list.append(x[i].numpy())
self.gt_label_score_list.append(label[i].numpy())
return {}
def reset(self):
self.gt_all_score_list = []
self.gt_label_score_list = []
self.max_acc = 0.
@property
def avg(self):
return self.max_acc
@property
def avg_info(self):
max_acc = 0.
result = ""
gt_all_score_list = np.array(self.gt_all_score_list)
gt_label_score_list = np.array(self.gt_label_score_list)
for i in range(self.num_iterations):
threshold = self.start_threshold + i * (self.end_threshold -
self.start_threshold
) / self.num_iterations
pred_label = (gt_all_score_list > threshold).astype(int)
TP = np.sum(
(gt_label_score_list == 1) * (pred_label == 1)).astype(float)
TN = np.sum(
(gt_label_score_list == 0) * (pred_label == 0)).astype(float)
acc = (TP + TN) / len(gt_all_score_list)
if max_acc <= acc:
max_acc = acc
result = "threshold: {}, mean_acc: {}".format(
threshold, max_acc / len(gt_label_score_list[0]))
self.max_acc = max_acc / len(gt_label_score_list[0])
return result
class Recallk(nn.Layer):
def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
# get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = gallery_img_id.t()
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype("float32"), choosen_indices)
equal_flag = equal_flag & keep_mask.astype("bool")
equal_flag = paddle.cast(equal_flag, "float32")
real_query_num = paddle.sum(equal_flag, axis=1)
real_query_num = paddle.sum((real_query_num > 0.0).astype("float32"))
acc_sum = paddle.cumsum(equal_flag, axis=1)
mask = (acc_sum > 0.0).astype("float32")
all_cmc = (paddle.sum(mask, axis=0) / real_query_num).numpy()
for k in self.topk:
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
return metric_dict
class Precisionk(nn.Layer):
def __init__(self, topk=(1, 5), descending=True):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
self.descending = descending
def forward(self, similarities_matrix, query_img_id, gallery_img_id,
keep_mask):
metric_dict = dict()
#get cmc
choosen_indices = paddle.argsort(
similarities_matrix, axis=1, descending=self.descending)
gallery_labels_transpose = paddle.transpose(gallery_img_id, [1, 0])
gallery_labels_transpose = paddle.broadcast_to(
gallery_labels_transpose,
shape=[
choosen_indices.shape[0], gallery_labels_transpose.shape[1]
])
choosen_label = paddle.index_sample(gallery_labels_transpose,
choosen_indices)
equal_flag = paddle.equal(choosen_label, query_img_id)
if keep_mask is not None:
keep_mask = paddle.index_sample(
keep_mask.astype('float32'), choosen_indices)
equal_flag = paddle.logical_and(equal_flag,
keep_mask.astype('bool'))
equal_flag = paddle.cast(equal_flag, 'float32')
Ns = paddle.arange(gallery_img_id.shape[0]) + 1
equal_flag_cumsum = paddle.cumsum(equal_flag, axis=1)
Precision_at_k = (paddle.mean(equal_flag_cumsum, axis=0) / Ns).numpy()
for k in self.topk:
metric_dict["precision@{}".format(k)] = Precision_at_k[k - 1]
return metric_dict
class DistillationTopkAcc(TopkAcc):
def __init__(self, model_key, feature_key=None, topk=(1, 5)):
super().__init__(topk=topk)
self.model_key = model_key
self.feature_key = feature_key
def forward(self, x, label):
if isinstance(x, dict):
x = x[self.model_key]
if self.feature_key is not None:
x = x[self.feature_key]
return super().forward(x, label)
class GoogLeNetTopkAcc(TopkAcc):
def __init__(self, topk=(1, 5)):
super().__init__()
assert isinstance(topk, (int, list, tuple))
if isinstance(topk, int):
topk = [topk]
self.topk = topk
def forward(self, x, label):
return super().forward(x[0], label)
class MultiLabelMetric(AvgMetrics):
def __init__(self, bi_threshold=0.5):
super().__init__()
self.bi_threshold = bi_threshold
def _multi_hot_encode(self, output):
logits = F.sigmoid(output).numpy()
return binarize(logits, threshold=self.bi_threshold)
class HammingDistance(MultiLabelMetric):
"""
Soft metric based label for multilabel classification
Returns:
The smaller the return value is, the better model is.
"""
def __init__(self):
super().__init__()
self.reset()
def reset(self):
self.avg_meters = {"HammingDistance": AverageMeter("HammingDistance")}
def forward(self, output, target):
preds = super()._multi_hot_encode(output)
metric_dict = dict()
metric_dict["HammingDistance"] = paddle.to_tensor(
hamming_loss(target, preds))
self.avg_meters["HammingDistance"].update(
float(metric_dict["HammingDistance"]), output.shape[0])
return metric_dict
class AccuracyScore(MultiLabelMetric):
"""
Hard metric for multilabel classification
Args:
base: ["sample", "label"], default="sample"
if "sample", return metric score based sample,
if "label", return metric score based label.
Returns:
accuracy:
"""
def __init__(self, base="label"):
super().__init__()
assert base in ["sample", "label"
], 'must be one of ["sample", "label"]'
self.base = base
self.reset()
def reset(self):
self.avg_meters = {"AccuracyScore": AverageMeter("AccuracyScore")}
def forward(self, output, target):
preds = super()._multi_hot_encode(output)
metric_dict = dict()
if self.base == "sample":
accuracy = accuracy_metric(target, preds)
elif self.base == "label":
mcm = multilabel_confusion_matrix(target, preds)
tns = mcm[:, 0, 0]
fns = mcm[:, 1, 0]
tps = mcm[:, 1, 1]
fps = mcm[:, 0, 1]
accuracy = (sum(tps) + sum(tns)) / (
sum(tps) + sum(tns) + sum(fns) + sum(fps))
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
self.avg_meters["AccuracyScore"].update(
float(metric_dict["AccuracyScore"]), output.shape[0])
return metric_dict
def get_attr_metrics(gt_label, preds_probs, threshold):
"""
index: evaluated label index
adapted from "https://github.com/valencebond/Rethinking_of_PAR/blob/master/metrics/pedestrian_metrics.py"
"""
pred_label = (preds_probs > threshold).astype(int)
eps = 1e-20
result = EasyDict()
has_fuyi = gt_label == -1
pred_label[has_fuyi] = -1
###############################
# label metrics
# TP + FN
result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
# TN + FP
result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
# TP
result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=0).astype(float)
# TN
result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
axis=0).astype(float)
# FP
result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
axis=0).astype(float)
# FN
result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
axis=0).astype(float)
################
# instance metrics
result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
# true positive
result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=1).astype(float)
# IOU
result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
axis=1).astype(float)
return result
class ATTRMetric(nn.Layer):
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
def reset(self):
self.attrmeter = AttrMeter(threshold=0.5)
def forward(self, output, target):
metric_dict = get_attr_metrics(target[:, 0, :].numpy(),
output.numpy(), self.threshold)
self.attrmeter.update(metric_dict)
return metric_dict
class MultiLabelMAP(nn.Layer):
"""
Calculate multi-label classification mean average precision.
Currently, support two types: 11point and integral
The code base on:
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/metrics/map_utils.py
Args:
map_type (str): Calculation method of mean average.
"""
def __init__(self, map_type='integral'):
super().__init__()
assert map_type in ['11point', 'integral'], \
"map_type currently only support '11point' and 'integral'"
self.map_type = map_type
self.reset()
def reset(self):
self.is_latest = True
self.class_score_poss = None
self.class_gt_counts = None
self.mAP = 0.0
def one_class_update(self, score, gt_label, class_idx):
topk_idx = np.argsort(score)[::-1]
topk_score = score[topk_idx]
topk_gt_label = gt_label[topk_idx]
for s, l in zip(topk_score, topk_gt_label):
if int(l) == 1:
self.class_score_poss[class_idx].append([s, 1.])
self.class_gt_counts[class_idx] += 1
else:
self.class_score_poss[class_idx].append([s, 0.])
@staticmethod
def get_tp_fp_accum(score_pos_list):
"""
Calculate accumulating true/false positive results from
[score, pos] records
"""
sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True)
accum_tp = 0
accum_fp = 0
accum_tp_list = []
accum_fp_list = []
for (score, pos) in sorted_list:
accum_tp += int(pos)
accum_tp_list.append(accum_tp)
accum_fp += 1 - int(pos)
accum_fp_list.append(accum_fp)
return accum_tp_list, accum_fp_list
def compute_mAP(self):
if not self.is_latest:
mAP = 0.
valid_cnt = 0
for score_pos, count in zip(self.class_score_poss,
self.class_gt_counts):
if count == 0:
continue
if len(score_pos) == 0:
valid_cnt += 1
continue
accum_tp_list, accum_fp_list = \
self.get_tp_fp_accum(score_pos)
precision = []
recall = []
for ac_tp, ac_fp in zip(accum_tp_list, accum_fp_list):
precision.append(float(ac_tp) / (ac_tp + ac_fp))
recall.append(float(ac_tp) / count)
one_class_ap = 0.0
if self.map_type == '11point':
max_precisions = [0.] * 11
start_idx = len(precision) - 1
for j in range(10, -1, -1):
for i in range(start_idx, -1, -1):
if recall[i] < float(j) / 10.:
start_idx = i
if j > 0:
max_precisions[j - 1] = max_precisions[j]
break
else:
if max_precisions[j] < precision[i]:
max_precisions[j] = precision[i]
one_class_ap = sum(max_precisions) / 11.
mAP += one_class_ap
valid_cnt += 1
elif self.map_type == 'integral':
import math
prev_recall = 0.
for i in range(len(precision)):
recall_gap = math.fabs(recall[i] - prev_recall)
if recall_gap > 1e-6:
one_class_ap += precision[i] * recall_gap
prev_recall = recall[i]
mAP += one_class_ap
valid_cnt += 1
else:
raise NotImplementedError(
f"Unsupported mAP type {self.map_type}")
self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP
self.is_latest = True
def forward(self, output, target):
scores = F.sigmoid(output).numpy()
gt_labels = target.numpy()
if self.class_score_poss is None:
self.class_score_poss = [[] for _ in range(scores.shape[-1])]
if self.class_gt_counts is None:
self.class_gt_counts = [0] * scores.shape[-1]
for class_idx in range(scores.shape[-1]):
score = scores[:, class_idx]
gt_label = gt_labels[:, class_idx]
self.one_class_update(score, gt_label, class_idx)
self.is_latest = False
return {}
@property
def avg_info(self):
self.compute_mAP()
return f"MultiLabelMAP({self.map_type}): {self.mAP:.3f}"
@property
def avg(self):
self.compute_mAP()
return self.mAP

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/paddlepaddle-PaddleClas.git
git@api.gitlife.ru:oschina-mirror/paddlepaddle-PaddleClas.git
oschina-mirror
paddlepaddle-PaddleClas
paddlepaddle-PaddleClas
release/2.6