Слияние кода завершено, страница обновится автоматически
/*
录音 Recorder扩展,音频变速变调转换,本代码从Sonic.java移植
https://github.com/xiangyuecn/Recorder
Recorder.Sonic(set)
Recorder.Sonic.Async(set)
有两种构造方法:Sonic是同步方法,Sonic.Async是异步方法,同步方法简单直接但处理量大时会消耗大量时间,主要用于一次性的处理;异步方法由WebWorker在后台进行运算处理,但异步方法不一定能成功开启(低版本浏览器),主要用于实时处理。
注意:异步方法调用后必须调用flush方法,否则会产生内存泄露。
【构造初始化参数】
set:{
sampleRate:待处理pcm的采样率,就是input输入的buffer的采样率
}
【功能配置调用函数】同步异步通用,以下num取值正常为0.1-2.0,超过这个范围也是可以的,但不推荐
.setPitch(num) num:0.1-n,变调不变速(会说话的汤姆猫),男女变声,只调整音调,不改变播放速度,默认为1.0不调整
.setSpeed(num) num:0.1-n,变速不变调(快放慢放),只调整播放速度,不改变音调,默认为1.0不调整
.setRate(num) num:0.1-n,变速变调,越小越缓重,越大越尖锐,会改变播放速度和音调,默认为1.0不调整
.setVolume(num) num:0.1-n,调整音量,默认为1.0不调整
.setChordPitch(bool) bool:默认false,作用未知,不推荐使用
.setQuality(num) num:0或1,默认0时会减小输入采样率来提供处理速度,变调时才会用到,不推荐使用
【同步调用方法】
.input(buffer) buffer:[Int16,...] 一维数组,输入pcm数据,返回转换后的部分pcm数据,完整输出需要调用flush;返回值[Int16,...]长度可能为0,代表没有数据被转换;此方法是耗时的方法,一次性处理大量pcm需要切片+setTimeout优化
.flush() 将残余的未转换的pcm数据完成转换并返回;返回值[Int16,...]长度可能为0,代表没有数据被转换,flush后不能再调用input
【异步调用方法】
.input(buffer,callback) callback:fn(pcm),和同步方法相同,只是返回值通过callback返回
.flush(callback) callback:fn(pcm),和同步方法相同,只是返回值通过callback返回
*/
(function(factory){
var browser=typeof window=="object" && !!window.document;
var win=browser?window:Object; //非浏览器环境,Recorder挂载在Object下面
var rec=win.Recorder,ni=rec.i18n;
factory(rec,ni,ni.$T,browser);
}(function(Recorder,i18n,$T,isBrowser){
"use strict";
//是否支持web worker
var HasWebWorker=isBrowser && typeof Worker=="function";
function SonicFunction(SonicFunction_set){//用函数包裹方便Web Worker化
//暴露接口
var fn=function(set){
this.set=set;
var sonic=Sonic_Class(this);
this.sonic=sonic;
sonic.New(set.sampleRate,1);
};
fn.prototype=SonicFunction.prototype={
input:function(buffer){
this.sonic.writeShortToStream(buffer);
return this.sonic.readShortFromStream();
}
,flush:function(){
this.sonic.flushStream();
return this.sonic.readShortFromStream();
}
};
//java 兼容环境
var System={
arraycopy:function(src,srcPos,dest,destPos,len){
for(var i=0;i<len;i++){
dest[destPos+i]=src[srcPos+i];
};
}
};
/* Sonic library
Copyright 2010, 2011
Bill Cox
This file is part of the Sonic Library.
This file is licensed under the Apache 2.0 license.
https://github.com/waywardgeek/sonic/blob/71c51195de71627d7443d05378c680ba756545e8/Sonic.java
*/
//Sonic.java 转写 js
function Sonic_Class(FnObj) {
var SONIC_MIN_PITCH = 65;
var SONIC_MAX_PITCH = 400;
// This is used to down-sample some inputs to improve speed
var SONIC_AMDF_FREQ = 4000;
// The number of points to use in the sinc FIR filter for resampling.
var SINC_FILTER_POINTS = 12;
var SINC_TABLE_SIZE = 601;
// Lookup table for windowed sinc function of SINC_FILTER_POINTS points.
var sincTable = [
0, 0, 0, 0, 0, 0, 0, -1, -1, -2, -2, -3, -4, -6, -7, -9, -10, -12, -14,
-17, -19, -21, -24, -26, -29, -32, -34, -37, -40, -42, -44, -47, -48, -50,
-51, -52, -53, -53, -53, -52, -50, -48, -46, -43, -39, -34, -29, -22, -16,
-8, 0, 9, 19, 29, 41, 53, 65, 79, 92, 107, 121, 137, 152, 168, 184, 200,
215, 231, 247, 262, 276, 291, 304, 317, 328, 339, 348, 357, 363, 369, 372,
374, 375, 373, 369, 363, 355, 345, 332, 318, 300, 281, 259, 234, 208, 178,
147, 113, 77, 39, 0, -41, -85, -130, -177, -225, -274, -324, -375, -426,
-478, -530, -581, -632, -682, -731, -779, -825, -870, -912, -951, -989,
-1023, -1053, -1080, -1104, -1123, -1138, -1149, -1154, -1155, -1151,
-1141, -1125, -1105, -1078, -1046, -1007, -963, -913, -857, -796, -728,
-655, -576, -492, -403, -309, -210, -107, 0, 111, 225, 342, 462, 584, 708,
833, 958, 1084, 1209, 1333, 1455, 1575, 1693, 1807, 1916, 2022, 2122, 2216,
2304, 2384, 2457, 2522, 2579, 2625, 2663, 2689, 2706, 2711, 2705, 2687,
2657, 2614, 2559, 2491, 2411, 2317, 2211, 2092, 1960, 1815, 1658, 1489,
1308, 1115, 912, 698, 474, 241, 0, -249, -506, -769, -1037, -1310, -1586,
-1864, -2144, -2424, -2703, -2980, -3254, -3523, -3787, -4043, -4291,
-4529, -4757, -4972, -5174, -5360, -5531, -5685, -5819, -5935, -6029,
-6101, -6150, -6175, -6175, -6149, -6096, -6015, -5905, -5767, -5599,
-5401, -5172, -4912, -4621, -4298, -3944, -3558, -3141, -2693, -2214,
-1705, -1166, -597, 0, 625, 1277, 1955, 2658, 3386, 4135, 4906, 5697, 6506,
7332, 8173, 9027, 9893, 10769, 11654, 12544, 13439, 14335, 15232, 16128,
17019, 17904, 18782, 19649, 20504, 21345, 22170, 22977, 23763, 24527,
25268, 25982, 26669, 27327, 27953, 28547, 29107, 29632, 30119, 30569,
30979, 31349, 31678, 31964, 32208, 32408, 32565, 32677, 32744, 32767,
32744, 32677, 32565, 32408, 32208, 31964, 31678, 31349, 30979, 30569,
30119, 29632, 29107, 28547, 27953, 27327, 26669, 25982, 25268, 24527,
23763, 22977, 22170, 21345, 20504, 19649, 18782, 17904, 17019, 16128,
15232, 14335, 13439, 12544, 11654, 10769, 9893, 9027, 8173, 7332, 6506,
5697, 4906, 4135, 3386, 2658, 1955, 1277, 625, 0, -597, -1166, -1705,
-2214, -2693, -3141, -3558, -3944, -4298, -4621, -4912, -5172, -5401,
-5599, -5767, -5905, -6015, -6096, -6149, -6175, -6175, -6150, -6101,
-6029, -5935, -5819, -5685, -5531, -5360, -5174, -4972, -4757, -4529,
-4291, -4043, -3787, -3523, -3254, -2980, -2703, -2424, -2144, -1864,
-1586, -1310, -1037, -769, -506, -249, 0, 241, 474, 698, 912, 1115, 1308,
1489, 1658, 1815, 1960, 2092, 2211, 2317, 2411, 2491, 2559, 2614, 2657,
2687, 2705, 2711, 2706, 2689, 2663, 2625, 2579, 2522, 2457, 2384, 2304,
2216, 2122, 2022, 1916, 1807, 1693, 1575, 1455, 1333, 1209, 1084, 958, 833,
708, 584, 462, 342, 225, 111, 0, -107, -210, -309, -403, -492, -576, -655,
-728, -796, -857, -913, -963, -1007, -1046, -1078, -1105, -1125, -1141,
-1151, -1155, -1154, -1149, -1138, -1123, -1104, -1080, -1053, -1023, -989,
-951, -912, -870, -825, -779, -731, -682, -632, -581, -530, -478, -426,
-375, -324, -274, -225, -177, -130, -85, -41, 0, 39, 77, 113, 147, 178,
208, 234, 259, 281, 300, 318, 332, 345, 355, 363, 369, 373, 375, 374, 372,
369, 363, 357, 348, 339, 328, 317, 304, 291, 276, 262, 247, 231, 215, 200,
184, 168, 152, 137, 121, 107, 92, 79, 65, 53, 41, 29, 19, 9, 0, -8, -16,
-22, -29, -34, -39, -43, -46, -48, -50, -52, -53, -53, -53, -52, -51, -50,
-48, -47, -44, -42, -40, -37, -34, -32, -29, -26, -24, -21, -19, -17, -14,
-12, -10, -9, -7, -6, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0, 0, 0, 0
];
var inputBuffer;
var outputBuffer;
var pitchBuffer;
var downSampleBuffer;
var speed=0;
var volume=0;
var pitch=0;
var rate=0;
var oldRatePosition=0;
var newRatePosition=0;
var useChordPitch=false;
var quality=0;
var numChannels=0;
var inputBufferSize=0;
var pitchBufferSize=0;
var outputBufferSize=0;
var numInputSamples=0;
var numOutputSamples=0;
var numPitchSamples=0;
var minPeriod=0;
var maxPeriod=0;
var maxRequired=0;
var remainingInputToCopy=0;
var sampleRate=0;
var prevPeriod=0;
var prevMinDiff=0;
var minDiff=0;
var maxDiff=0;
// Resize the array.
function resize(
oldArray,
newLength)
{
newLength *= numChannels;
var newArray = new Int16Array(newLength);
var length = oldArray.length <= newLength? oldArray.length : newLength;
System.arraycopy(oldArray, 0, newArray, 0, length);
return newArray;
}
// Move samples from one array to another. May move samples down within an array, but not up.
function move(
dest,
destPos,
source,
sourcePos,
numSamples)
{
System.arraycopy(source, sourcePos*numChannels, dest, destPos*numChannels, numSamples*numChannels);
}
// Scale the samples by the factor.
function scaleSamples(
samples,
position,
numSamples,
volume)
{
var fixedPointVolume = Math.floor(volume*4096.0);
var start = position*numChannels;
var stop = start + numSamples*numChannels;
for(var xSample = start; xSample < stop; xSample++) {
var value = (samples[xSample]*fixedPointVolume) >> 12;
if(value > 32767) {
value = 32767;
} else if(value < -32767) {
value = -32767;
}
samples[xSample] = value;
}
}
// Get the speed of the stream.
function getSpeed()
{
return speed;
}
// Set the speed of the stream.
function setSpeed(
speed_)
{
speed = speed_;
}
// Get the pitch of the stream.
function getPitch()
{
return pitch;
}
// Set the pitch of the stream.
function setPitch(
pitch_)
{
pitch = pitch_;
}
// Get the rate of the stream.
function getRate()
{
return rate;
}
// Set the playback rate of the stream. This scales pitch and speed at the same time.
function setRate(
rate_)
{
if(rate!=rate_){//允许任意设置
rate = rate_;
oldRatePosition = 0;
newRatePosition = 0;
}
}
// Get the vocal chord pitch setting.
function getChordPitch()
{
return useChordPitch;
}
// Set the vocal chord mode for pitch computation. Default is off.
function setChordPitch(
useChordPitch_)
{
useChordPitch = useChordPitch_;
}
// Get the quality setting.
function getQuality()
{
return quality;
}
// Set the "quality". Default 0 is virtually as good as 1, but very much faster.
function setQuality(
quality_)
{
quality = quality_;
}
// Get the scaling factor of the stream.
function getVolume()
{
return volume;
}
// Set the scaling factor of the stream.
function setVolume(
volume_)
{
volume = volume_;
}
// Allocate stream buffers.
function allocateStreamBuffers(
sampleRate_,
numChannels_)
{
minPeriod = Math.floor(sampleRate_/SONIC_MAX_PITCH);
maxPeriod = Math.floor(sampleRate_/SONIC_MIN_PITCH);
maxRequired = 2*maxPeriod;
inputBufferSize = maxRequired;
inputBuffer = new Int16Array(maxRequired*numChannels_);
outputBufferSize = maxRequired;
outputBuffer = new Int16Array(maxRequired*numChannels_);
pitchBufferSize = maxRequired;
pitchBuffer = new Int16Array(maxRequired*numChannels_);
downSampleBuffer = new Int16Array(maxRequired);
sampleRate = sampleRate_;
numChannels = numChannels_;
oldRatePosition = 0;
newRatePosition = 0;
prevPeriod = 0;
}
// Create a sonic stream.
function Sonic(
sampleRate,
numChannels)
{
allocateStreamBuffers(sampleRate, numChannels);
speed = 1.0;
pitch = 1.0;
volume = 1.0;
rate = 1.0;
oldRatePosition = 0;
newRatePosition = 0;
useChordPitch = false;
quality = 0;
}
// Get the sample rate of the stream.
function getSampleRate()
{
return sampleRate;
}
// Set the sample rate of the stream. This will cause samples buffered in the stream to be lost.
function setSampleRate(
sampleRate)
{
allocateStreamBuffers(sampleRate, numChannels);
}
// Get the number of channels.
function getNumChannels()
{
return numChannels;
}
// Set the num channels of the stream. This will cause samples buffered in the stream to be lost.
function setNumChannels(
numChannels)
{
allocateStreamBuffers(sampleRate, numChannels);
}
// Enlarge the output buffer if needed.
function enlargeOutputBufferIfNeeded(
numSamples)
{
if(numOutputSamples + numSamples > outputBufferSize) {
outputBufferSize += (outputBufferSize >> 1) + numSamples;
outputBuffer = resize(outputBuffer, outputBufferSize);
}
}
// Enlarge the input buffer if needed.
function enlargeInputBufferIfNeeded(
numSamples)
{
if(numInputSamples + numSamples > inputBufferSize) {
inputBufferSize += (inputBufferSize >> 1) + numSamples;
inputBuffer = resize(inputBuffer, inputBufferSize);
}
}
// Add the input samples to the input buffer.
function addShortSamplesToInputBuffer(
samples,
numSamples)
{
if(numSamples == 0) {
return;
}
enlargeInputBufferIfNeeded(numSamples);
move(inputBuffer, numInputSamples, samples, 0, numSamples);
numInputSamples += numSamples;
}
// Remove input samples that we have already processed.
function removeInputSamples(
position)
{
var remainingSamples = numInputSamples - position;
move(inputBuffer, 0, inputBuffer, position, remainingSamples);
numInputSamples = remainingSamples;
}
// Just copy from the array to the output buffer
function copyToOutput(
samples,
position,
numSamples)
{
enlargeOutputBufferIfNeeded(numSamples);
move(outputBuffer, numOutputSamples, samples, position, numSamples);
numOutputSamples += numSamples;
}
// Just copy from the input buffer to the output buffer. Return num samples copied.
function copyInputToOutput(
position)
{
var numSamples = remainingInputToCopy;
if(numSamples > maxRequired) {
numSamples = maxRequired;
}
copyToOutput(inputBuffer, position, numSamples);
remainingInputToCopy -= numSamples;
return numSamples;
}
// Read short data out of the stream. Sometimes no data will be available, and zero
// is returned, which is not an error condition.
function readShortFromStream() //已改成直接返回所有的Int16Array
{
var numSamples = numOutputSamples;
var samples=new Int16Array(numSamples);
var remainingSamples = 0;
if(numSamples == 0) {
return samples;
}
move(samples, 0, outputBuffer, 0, numSamples);
move(outputBuffer, 0, outputBuffer, numSamples, remainingSamples);
numOutputSamples = remainingSamples;
return samples;
}
// Force the sonic stream to generate output using whatever data it currently
// has. No extra delay will be added to the output, but flushing in the middle of
// words could introduce distortion.
function flushStream()
{
var remainingSamples = numInputSamples;
var s = speed/pitch;
var r = rate*pitch;
var expectedOutputSamples = Math.floor(numOutputSamples + Math.floor((remainingSamples/s + numPitchSamples)/r + 0.5));
// Add enough silence to flush both input and pitch buffers.
enlargeInputBufferIfNeeded(remainingSamples + 2*maxRequired);
for(var xSample = 0; xSample < 2*maxRequired*numChannels; xSample++) {
inputBuffer[remainingSamples*numChannels + xSample] = 0;
}
numInputSamples += 2*maxRequired;
writeShortToStream(null, 0);
// Throw away any extra samples we generated due to the silence we added.
if(numOutputSamples > expectedOutputSamples) {
numOutputSamples = expectedOutputSamples;
}
// Empty input and pitch buffers.
numInputSamples = 0;
remainingInputToCopy = 0;
numPitchSamples = 0;
}
// Return the number of samples in the output buffer
function samplesAvailable()
{
return numOutputSamples;
}
// If skip is greater than one, average skip samples together and write them to
// the down-sample buffer. If numChannels is greater than one, mix the channels
// together as we down sample.
function downSampleInput(
samples,
position,
skip)
{
var numSamples = Math.floor(maxRequired/skip);
var samplesPerValue = numChannels*skip;
var value;
position *= numChannels;
for(var i = 0; i < numSamples; i++) {
value = 0;
for(var j = 0; j < samplesPerValue; j++) {
value += samples[position + i*samplesPerValue + j];
}
value = Math.floor(value/samplesPerValue);
downSampleBuffer[i] = value;
}
}
// Find the best frequency match in the range, and given a sample skip multiple.
// For now, just find the pitch of the first channel.
function findPitchPeriodInRange(
samples,
position,
minPeriod,
maxPeriod)
{
var bestPeriod = 0, worstPeriod = 255;
var minDiff_ = 1, maxDiff_ = 0;
position *= numChannels;
for(var period = minPeriod; period <= maxPeriod; period++) {
var diff = 0;
for(var i = 0; i < period; i++) {
var sVal = samples[position + i];
var pVal = samples[position + period + i];
diff += sVal >= pVal? sVal - pVal : pVal - sVal;
}
/* Note that the highest number of samples we add into diff will be less
than 256, since we skip samples. Thus, diff is a 24 bit number, and
we can safely multiply by numSamples without overflow */
if(diff*bestPeriod < minDiff_*period) {
minDiff_ = diff;
bestPeriod = period;
}
if(diff*worstPeriod > maxDiff_*period) {
maxDiff_ = diff;
worstPeriod = period;
}
}
minDiff = Math.floor(minDiff_/bestPeriod);
maxDiff = Math.floor(maxDiff_/worstPeriod);
return bestPeriod;
}
// At abrupt ends of voiced words, we can have pitch periods that are better
// approximated by the previous pitch period estimate. Try to detect this case.
function prevPeriodBetter(
minDiff,
maxDiff,
preferNewPeriod)
{
if(minDiff == 0 || prevPeriod == 0) {
return false;
}
if(preferNewPeriod) {
if(maxDiff > minDiff*3) {
// Got a reasonable match this period
return false;
}
if(minDiff*2 <= prevMinDiff*3) {
// Mismatch is not that much greater this period
return false;
}
} else {
if(minDiff <= prevMinDiff) {
return false;
}
}
return true;
}
// Find the pitch period. This is a critical step, and we may have to try
// multiple ways to get a good answer. This version uses AMDF. To improve
// speed, we down sample by an integer factor get in the 11KHz range, and then
// do it again with a narrower frequency range without down sampling
function findPitchPeriod(
samples,
position,
preferNewPeriod)
{
var period, retPeriod;
var skip = 1;
if(sampleRate > SONIC_AMDF_FREQ && quality == 0) {
skip = Math.floor(sampleRate/SONIC_AMDF_FREQ);
}
if(numChannels == 1 && skip == 1) {
period = findPitchPeriodInRange(samples, position, minPeriod, maxPeriod);
} else {
downSampleInput(samples, position, skip);
period = findPitchPeriodInRange(downSampleBuffer, 0, Math.floor(minPeriod/skip),
Math.floor(maxPeriod/skip));
if(skip != 1) {
period *= skip;
var minP = period - (skip << 2);
var maxP = period + (skip << 2);
if(minP < minPeriod) {
minP = minPeriod;
}
if(maxP > maxPeriod) {
maxP = maxPeriod;
}
if(numChannels == 1) {
period = findPitchPeriodInRange(samples, position, minP, maxP);
} else {
downSampleInput(samples, position, 1);
period = findPitchPeriodInRange(downSampleBuffer, 0, minP, maxP);
}
}
}
if(prevPeriodBetter(minDiff, maxDiff, preferNewPeriod)) {
retPeriod = prevPeriod;
} else {
retPeriod = period;
}
prevMinDiff = minDiff;
prevPeriod = period;
return retPeriod;
}
// Overlap two sound segments, ramp the volume of one down, while ramping the
// other one from zero up, and add them, storing the result at the output.
function overlapAdd(
numSamples,
numChannels,
out,
outPos,
rampDown,
rampDownPos,
rampUp,
rampUpPos)
{
for(var i = 0; i < numChannels; i++) {
var o = outPos*numChannels + i;
var u = rampUpPos*numChannels + i;
var d = rampDownPos*numChannels + i;
for(var t = 0; t < numSamples; t++) {
out[o] = Math.floor((rampDown[d]*(numSamples - t) + rampUp[u]*t)/numSamples);
o += numChannels;
d += numChannels;
u += numChannels;
}
}
}
// Overlap two sound segments, ramp the volume of one down, while ramping the
// other one from zero up, and add them, storing the result at the output.
function overlapAddWithSeparation(
numSamples,
numChannels,
separation,
out,
outPos,
rampDown,
rampDownPos,
rampUp,
rampUpPos)
{
for(var i = 0; i < numChannels; i++) {
var o = outPos*numChannels + i;
var u = rampUpPos*numChannels + i;
var d = rampDownPos*numChannels + i;
for(var t = 0; t < numSamples + separation; t++) {
if(t < separation) {
out[o] = Math.floor(rampDown[d]*(numSamples - t)/numSamples);
d += numChannels;
} else if(t < numSamples) {
out[o] = Math.floor((rampDown[d]*(numSamples - t) + rampUp[u]*(t - separation))/numSamples);
d += numChannels;
u += numChannels;
} else {
out[o] = Math.floor(rampUp[u]*(t - separation)/numSamples);
u += numChannels;
}
o += numChannels;
}
}
}
// Just move the new samples in the output buffer to the pitch buffer
function moveNewSamplesToPitchBuffer(
originalNumOutputSamples)
{
var numSamples = numOutputSamples - originalNumOutputSamples;
if(numPitchSamples + numSamples > pitchBufferSize) {
pitchBufferSize += (pitchBufferSize >> 1) + numSamples;
pitchBuffer = resize(pitchBuffer, pitchBufferSize);
}
move(pitchBuffer, numPitchSamples, outputBuffer, originalNumOutputSamples, numSamples);
numOutputSamples = originalNumOutputSamples;
numPitchSamples += numSamples;
}
// Remove processed samples from the pitch buffer.
function removePitchSamples(
numSamples)
{
if(numSamples == 0) {
return;
}
move(pitchBuffer, 0, pitchBuffer, numSamples, numPitchSamples - numSamples);
numPitchSamples -= numSamples;
}
// Change the pitch. The latency this introduces could be reduced by looking at
// past samples to determine pitch, rather than future.
function adjustPitch(
originalNumOutputSamples)
{
var period, newPeriod, separation;
var position = 0;
if(numOutputSamples == originalNumOutputSamples) {
return;
}
moveNewSamplesToPitchBuffer(originalNumOutputSamples);
while(numPitchSamples - position >= maxRequired) {
period = findPitchPeriod(pitchBuffer, position, false);
newPeriod = Math.floor(period/pitch);
enlargeOutputBufferIfNeeded(newPeriod);
if(pitch >= 1.0) {
overlapAdd(newPeriod, numChannels, outputBuffer, numOutputSamples, pitchBuffer,
position, pitchBuffer, position + period - newPeriod);
} else {
separation = newPeriod - period;
overlapAddWithSeparation(period, numChannels, separation, outputBuffer, numOutputSamples,
pitchBuffer, position, pitchBuffer, position);
}
numOutputSamples += newPeriod;
position += period;
}
removePitchSamples(position);
}
// Aproximate the sinc function times a Hann window from the sinc table.
function findSincCoefficient(i, ratio, width) {
var lobePoints = Math.floor((SINC_TABLE_SIZE-1)/SINC_FILTER_POINTS);
var left = Math.floor(i*lobePoints + (ratio*lobePoints)/width);
var right = left + 1;
var position = i*lobePoints*width + ratio*lobePoints - left*width;
var leftVal = sincTable[left];
var rightVal = sincTable[right];
return Math.floor(((leftVal*(width - position) + rightVal*position) << 1)/width);
}
// Return 1 if value >= 0, else -1. This represents the sign of value.
function getSign(value) {
return value >= 0? 1 : -1;
}
// Interpolate the new output sample.
function interpolate(
in_,
inPos, // Index to first sample which already includes channel offset.
oldSampleRate,
newSampleRate)
{
// Compute N-point sinc FIR-filter here. Clip rather than overflow.
var i;
var total = 0;
var position = newRatePosition*oldSampleRate;
var leftPosition = oldRatePosition*newSampleRate;
var rightPosition = (oldRatePosition + 1)*newSampleRate;
var ratio = rightPosition - position - 1;
var width = rightPosition - leftPosition;
var weight, value;
var oldSign;
var overflowCount = 0;
for (i = 0; i < SINC_FILTER_POINTS; i++) {
weight = findSincCoefficient(i, ratio, width);
/* printf("%u %f\n", i, weight); */
value = in_[inPos + i*numChannels]*weight;
oldSign = getSign(total);
total += value;
if (oldSign != getSign(total) && getSign(value) == oldSign) {
/* We must have overflowed. This can happen with a sinc filter. */
overflowCount += oldSign;
}
}
/* It is better to clip than to wrap if there was a overflow. */
if (overflowCount > 0) {
return 0x7FFF;
} else if (overflowCount < 0) {
return -0x8000;
}
return (total >> 16)&0xffff;
}
// Change the rate.
function adjustRate(
rate,
originalNumOutputSamples)
{
var newSampleRate = Math.floor(sampleRate/rate);
var oldSampleRate = sampleRate;
var position;
// Set these values to help with the integer math
while(newSampleRate > (1 << 14) || oldSampleRate > (1 << 14)) {
newSampleRate >>= 1;
oldSampleRate >>= 1;
}
if(numOutputSamples == originalNumOutputSamples) {
return;
}
moveNewSamplesToPitchBuffer(originalNumOutputSamples);
// Leave at least one pitch sample in the buffer
for(position = 0; position < numPitchSamples - 1; position++) {
while((oldRatePosition + 1)*newSampleRate > newRatePosition*oldSampleRate) {
enlargeOutputBufferIfNeeded(1);
for(var i = 0; i < numChannels; i++) {
outputBuffer[numOutputSamples*numChannels + i] = interpolate(pitchBuffer,
position*numChannels + i, oldSampleRate, newSampleRate);
}
newRatePosition++;
numOutputSamples++;
}
oldRatePosition++;
if(oldRatePosition == oldSampleRate) {
oldRatePosition = 0;
if(newRatePosition != newSampleRate) {
throw new Error("Assertion failed: newRatePosition != newSampleRate\n");
//assert false;
}
newRatePosition = 0;
}
}
removePitchSamples(position);
}
// Skip over a pitch period, and copy period/speed samples to the output
function skipPitchPeriod(
samples,
position,
speed,
period)
{
var newSamples;
if(speed >= 2.0) {
newSamples = Math.floor(period/(speed - 1.0));
} else {
newSamples = period;
remainingInputToCopy = Math.floor(period*(2.0 - speed)/(speed - 1.0));
}
enlargeOutputBufferIfNeeded(newSamples);
overlapAdd(newSamples, numChannels, outputBuffer, numOutputSamples, samples, position,
samples, position + period);
numOutputSamples += newSamples;
return newSamples;
}
// Insert a pitch period, and determine how much input to copy directly.
function insertPitchPeriod(
samples,
position,
speed,
period)
{
var newSamples;
if(speed < 0.5) {
newSamples = Math.floor(period*speed/(1.0 - speed));
} else {
newSamples = period;
remainingInputToCopy = Math.floor(period*(2.0*speed - 1.0)/(1.0 - speed));
}
enlargeOutputBufferIfNeeded(period + newSamples);
move(outputBuffer, numOutputSamples, samples, position, period);
overlapAdd(newSamples, numChannels, outputBuffer, numOutputSamples + period, samples,
position + period, samples, position);
numOutputSamples += period + newSamples;
return newSamples;
}
// Resample as many pitch periods as we have buffered on the input. Return 0 if
// we fail to resize an input or output buffer. Also scale the output by the volume.
function changeSpeed(
speed)
{
var numSamples = numInputSamples;
var position = 0, period, newSamples;
if(numInputSamples < maxRequired) {
return;
}
do {
if(remainingInputToCopy > 0) {
newSamples = copyInputToOutput(position);
position += newSamples;
} else {
period = findPitchPeriod(inputBuffer, position, true);
if(speed > 1.0) {
newSamples = skipPitchPeriod(inputBuffer, position, speed, period);
position += period + newSamples;
} else {
newSamples = insertPitchPeriod(inputBuffer, position, speed, period);
position += newSamples;
}
}
} while(position + maxRequired <= numSamples);
removeInputSamples(position);
}
// Resample as many pitch periods as we have buffered on the input. Scale the output by the volume.
function processStreamInput()
{
var originalNumOutputSamples = numOutputSamples;
var s = speed/pitch;
var r = rate;
if(!useChordPitch) {
r *= pitch;
}
if(s > 1.00001 || s < 0.99999) {
changeSpeed(s);
} else {
copyToOutput(inputBuffer, 0, numInputSamples);
numInputSamples = 0;
}
if(useChordPitch) {
if(pitch != 1.0) {
adjustPitch(originalNumOutputSamples);
}
} else if(r != 1.0) {
adjustRate(r, originalNumOutputSamples);
}
if(volume != 1.0) {
// Adjust output volume.
scaleSamples(outputBuffer, originalNumOutputSamples, numOutputSamples - originalNumOutputSamples,
volume);
}
}
// Write the data to the input stream, and process it.
function writeShortToStream(
samples)
{
addShortSamplesToInputBuffer(samples, samples?samples.length:0);
processStreamInput();
}
/**导出Sonic对象**/
FnObj.setPitch=setPitch;
FnObj.setRate=setRate;
FnObj.setSpeed=setSpeed;
FnObj.setVolume=setVolume;
FnObj.setChordPitch=setChordPitch;
FnObj.setQuality=setQuality;
return {
New:Sonic
,flushStream:flushStream
,writeShortToStream:writeShortToStream
,readShortFromStream:readShortFromStream
};
}
return new fn(SonicFunction_set);
};
Recorder.Sonic=SonicFunction;
//Worker异步化
var sonicWorker;
Recorder.BindDestroy("sonicWorker",function(){
if(sonicWorker){
Recorder.CLog("sonicWorker Destroy");
sonicWorker&&sonicWorker.terminate();
sonicWorker=null;
};
});
//开启异步,如果返回null代表不支持,开启成功后必须调用flush方法,否则会内存泄露
var openList={id:0};
SonicFunction.Async=function(set){
if(!HasWebWorker){
Recorder.CLog($T("Ikdz::当前环境不支持Web Worker,不支持调用Sonic.Async"),3);
return null;
};
var worker=sonicWorker;
try{
var onmsg=function(e){
var ed=e.data;
var cur=wk_ctxs[ed.id];
if(ed.action=="init"){
wk_ctxs[ed.id]={
sampleRate:ed.sampleRate
,sonicObj:wk_sonic({sampleRate:ed.sampleRate})
};
}else if(!cur){
return;
};
switch(ed.action){
case "flush":
var pcm=cur.sonicObj.flush();
self.postMessage({
action:ed.action
,id:ed.id
,call:ed.call
,pcm:pcm
});
cur.sonicObj=null;
delete wk_ctxs[ed.id];
break;
case "input":
var pcm=cur.sonicObj.input(ed.pcm);
self.postMessage({
action:ed.action
,id:ed.id
,call:ed.call
,pcm:pcm
});
break;
default:
if(/^set/.test(ed.action)){
cur.sonicObj[ed.action](ed.param);
};
};
};
if(!worker){
//创建一个新Worker
var jsCode=");var wk_ctxs={};self.onmessage="+onmsg;
var sonicCode=Recorder.Sonic.toString();
var url=(window.URL||webkitURL).createObjectURL(new Blob(["var wk_sonic=(",sonicCode,jsCode], {type:"text/javascript"}));
worker=new Worker(url);
setTimeout(function(){
(window.URL||webkitURL).revokeObjectURL(url);//必须要释放,不然每次调用内存都明显泄露内存
},10000);//chrome 83 file协议下如果直接释放,将会使WebWorker无法启动
worker.onmessage=function(e){
var ctx=openList[e.data.id];
if(ctx){
var fn=ctx.cbs[e.data.call];
fn&&fn(e.data);
};
};
};
var ctx=new sonicWorkerCtx(worker,set);
ctx.id=++openList.id;
openList[ctx.id]=ctx;
worker.postMessage({
action:"init"
,id:ctx.id
,sampleRate:set.sampleRate
,x:new Int16Array(5)//低版本浏览器不支持序列化TypedArray
});
sonicWorker=worker;
return ctx;
}catch(e){//出错了就不要提供了
worker&&worker.terminate();
console.error(e);
return null;
};
};
var sonicWorkerCtx=function(worker,set){
this.worker=worker;
this.set=set;
this.cbs={i:0};
};
sonicWorkerCtx.prototype={
cb:function(call){
var This=this;
var id="cb"+(++This.cbs.i);
This.cbs[id]=function(data){
delete This.cbs[id];
call(data);
};
return id;
}
,flush:function(call){
var This=this;if(!This.worker)return;
This.worker.postMessage({
action:"flush"
,id:This.id
,call:This.cb(function(data){
call&&call(data.pcm);
This.worker=null;
delete openList[This.id];
//疑似泄露检测 排除id
var opens=-1;
for(var k in openList){
opens++;
};
if(opens){
Recorder.CLog($T("IC5Y::sonic worker剩{1}个未flush",0,opens),3);
};
})
});
}
,input:function(pcm,call){
var This=this;if(!This.worker)return;
This.worker.postMessage({
action:"input"
,id:This.id
,pcm:pcm
,call:This.cb(function(data){
call&&call(data.pcm);
})
});
}
};
var addWorkerCtxSet=function(key){
sonicWorkerCtx.prototype[key]=function(param){
var This=this;if(!This.worker)return;
This.worker.postMessage({
action:key
,id:This.id
,param:param
});
}
};
addWorkerCtxSet("setPitch");
addWorkerCtxSet("setRate");
addWorkerCtxSet("setSpeed");
addWorkerCtxSet("setVolume");
addWorkerCtxSet("setChordPitch");
addWorkerCtxSet("setQuality");
}));
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )