1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/zhouxs1023-iverilog

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
elab_lval.cc 55 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
Martin Whitaker Отправлено 25.02.2024 19:12 f08ff89
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601
/*
* Copyright (c) 2000-2024 Stephen Williams (steve@icarus.com)
* Copyright CERN 2012-2013 / Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include "PExpr.h"
# include "PPackage.h"
# include "netlist.h"
# include "netmisc.h"
# include "netstruct.h"
# include "netclass.h"
# include "netdarray.h"
# include "netparray.h"
# include "netvector.h"
# include "netenum.h"
# include "compiler.h"
# include <cstdlib>
# include <iostream>
# include <climits>
# include "ivl_assert.h"
using namespace std;
/*
* These methods generate a NetAssign_ object for the l-value of the
* assignment. This is common code for the = and <= statements.
*
* What gets generated depends on the structure of the l-value. If the
* l-value is a simple name (i.e., foo <= <value>) then the NetAssign_
* is created the width of the foo reg and connected to all the
* bits.
*
* If there is a part select (i.e., foo[3:1] <= <value>) the NetAssign_
* is made only as wide as it needs to be (3 bits in this example) and
* connected to the correct bits of foo. A constant bit select is a
* special case of the part select.
*
* If the bit-select is non-constant (i.e., foo[<expr>] = <value>) the
* NetAssign_ is made wide enough to connect to all the bits of foo,
* then the mux expression is elaborated and attached to the
* NetAssign_ node as a b_mux value. The target must interpret the
* presence of a bmux value as taking a single bit and assigning it to
* the bit selected by the bmux expression.
*
* If the l-value expression is non-trivial, but can be fully
* evaluated at compile time (meaning any bit selects are constant)
* then elaboration will make a single NetAssign_ that connects to a
* synthetic reg that in turn connects to all the proper pins of the
* l-value.
*
* This last case can turn up in statements like: {a, b[1]} = c;
* rather than create a NetAssign_ for each item in the concatenation,
* elaboration makes a single NetAssign_ and connects it up properly.
*/
void PEIdent::report_mixed_assignment_conflict_(const char*category) const
{
cerr << get_fileline() << ": error: Cannot perform procedural "
"assignment to " << category << " '" << path_
<< "' because it is also continuously assigned." << endl;
}
/*
* The default interpretation of an l-value to a procedural assignment
* is to try to make a net elaboration, and see if the result is
* suitable for assignment.
*/
NetAssign_* PExpr::elaborate_lval(Design*, NetScope*, bool, bool, bool) const
{
cerr << get_fileline() << ": Assignment l-value too complex." << endl;
return 0;
}
/*
* Concatenation expressions can appear as l-values. Handle them here.
*
* If adjacent l-values in the concatenation are not bit selects, then
* merge them into a single NetAssign_ object. This can happen is code
* like ``{ ...a, b, ...}''. As long as "a" and "b" do not have bit
* selects (or the bit selects are constant) we can merge the
* NetAssign_ objects.
*
* Be careful to get the bit order right. In the expression ``{a, b}''
* a is the MSB and b the LSB. Connect the LSB to the low pins of the
* NetAssign_ object.
*/
NetAssign_* PEConcat::elaborate_lval(Design*des,
NetScope*scope,
bool is_cassign,
bool is_force,
bool is_init) const
{
if (repeat_) {
cerr << get_fileline() << ": error: Repeat concatenations make "
"no sense in l-value expressions. I refuse." << endl;
des->errors += 1;
return 0;
}
NetAssign_*res = 0;
for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) {
if (parms_[idx] == 0) {
cerr << get_fileline() << ": error: Empty expressions "
<< "not allowed in concatenations." << endl;
des->errors += 1;
continue;
}
NetAssign_*tmp = parms_[idx]->elaborate_lval(des, scope,
is_cassign, is_force, is_init);
/* If the l-value doesn't elaborate, the error was
already detected and printed. We just skip it and let
the compiler catch more errors. */
if (tmp == 0) continue;
if (tmp->expr_type() == IVL_VT_REAL) {
cerr << parms_[idx]->get_fileline() << ": error: "
<< "concatenation operand can not be real: "
<< *parms_[idx] << endl;
des->errors += 1;
continue;
}
/* A concatenation is always unsigned. */
tmp->set_signed(false);
/* Link the new l-value to the previous one. */
NetAssign_*last = tmp;
while (last->more)
last = last->more;
last->more = res;
res = tmp;
}
return res;
}
/*
* Handle the ident as an l-value. This includes bit and part selects
* of that ident.
*/
NetAssign_* PEIdent::elaborate_lval(Design*des,
NetScope*scope,
bool is_cassign,
bool is_force,
bool is_init) const
{
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval: "
<< "Elaborate l-value ident expression: " << *this << endl;
}
symbol_search_results sr;
symbol_search(this, des, scope, path_, lexical_pos_, &sr);
NetNet *reg = sr.net;
pform_name_t &member_path = sr.path_tail;
/* The l-value must be a variable. If not, then give up and
print a useful error message. */
if (reg == 0) {
if (scope->type()==NetScope::FUNC
&& scope->func_def()->is_void()
&& scope->basename()==peek_tail_name(path_)) {
cerr << get_fileline() << ": error: "
<< "Cannot assign to " << path_
<< " because function " << scope_path(scope)
<< " is void." << endl;
} else {
cerr << get_fileline() << ": error: Could not find variable ``"
<< path_ << "'' in ``" << scope_path(scope) <<
"''" << endl;
if (sr.decl_after_use) {
cerr << sr.decl_after_use->get_fileline() << ": : "
"A symbol with that name was declared here. "
"Check for declaration after use." << endl;
}
}
des->errors += 1;
return 0;
}
ivl_assert(*this, reg);
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Found l-value path_=" << path_
<< " as reg=" << reg->name() << endl;
cerr << get_fileline() << ": " << __func__ << ": "
<< "reg->type()=" << reg->type()
<< ", reg->unpacked_dimensions()=" << reg->unpacked_dimensions()
<< endl;
if (reg->net_type())
cerr << get_fileline() << ": " << __func__ << ": "
<< "reg->net_type()=" << *reg->net_type() << endl;
else
cerr << get_fileline() << ": " << __func__ << ": "
<< "reg->net_type()=<nil>" << endl;
const pform_name_t &base_path = sr.path_head;
cerr << get_fileline() << ": " << __func__ << ": "
<< " base_path=" << base_path
<< ", member_path=" << member_path
<< endl;
}
if (reg->get_const() && !is_init) {
cerr << get_fileline() << ": error: Assignment to const signal `"
<< reg->name() << "` is not allowed." << endl;
des->errors++;
return nullptr;
}
/* We are elaborating procedural assignments. Wires are not allowed
unless this is the l-value of a force. */
if ((reg->type() != NetNet::REG)
&& ((reg->type() != NetNet::UNRESOLVED_WIRE) || !reg->coerced_to_uwire())
&& !is_force) {
cerr << get_fileline() << ": error: '" << path_
<< "' is not a valid l-value for a procedural assignment."
<< endl;
cerr << reg->get_fileline() << ": : '" << path_ <<
"' is declared here as a " << reg->type() << "." << endl;
des->errors += 1;
return 0;
}
return elaborate_lval_var_(des, scope, is_force, is_cassign, reg,
sr.type, member_path);
}
NetAssign_*PEIdent::elaborate_lval_var_(Design *des, NetScope *scope,
bool is_force, bool is_cassign,
NetNet *reg, ivl_type_t data_type,
pform_name_t tail_path) const
{
// We are processing the tail of a string of names. For
// example, the Verilog may be "a.b.c", so we are processing
// "c" at this point.
const name_component_t&name_tail = path_.back();
// Use the last index to determine what kind of select
// (bit/part/etc) we are processing. For example, the Verilog
// may be "a.b.c[1][2][<index>]". All but the last index must
// be simple expressions, only the <index> may be a part
// select etc., so look at it to determine how we will be
// proceeding.
index_component_t::ctype_t use_sel = index_component_t::SEL_NONE;
if (!name_tail.index.empty())
use_sel = name_tail.index.back().sel;
// Special case: The l-value is an entire memory, or array
// slice. Detect the situation by noting if the index count
// is less than the array dimensions (unpacked).
if (reg->unpacked_dimensions() > name_tail.index.size()) {
return elaborate_lval_array_(des, scope, is_force, reg);
}
// If we find that the matched variable is a packed struct,
// then we can handled it with the net_packed_member_ method.
if (reg->struct_type() && !tail_path.empty()) {
NetAssign_*lv = new NetAssign_(reg);
elaborate_lval_net_packed_member_(des, scope, lv, tail_path, is_force);
return lv;
}
// If the variable is a class object, then handle it with the
// net_class_member_ method.
const netclass_t *class_type = dynamic_cast<const netclass_t *>(data_type);
if (class_type && !tail_path.empty() && gn_system_verilog())
return elaborate_lval_net_class_member_(des, scope, class_type, reg, tail_path);
// Past this point, we should have taken care of the cases
// where the name is a member/method of a struct/class.
// XXXX ivl_assert(*this, method_name.nil());
ivl_assert(*this, tail_path.empty());
bool need_const_idx = is_cassign || is_force;
if (reg->unpacked_dimensions() > 0)
return elaborate_lval_net_word_(des, scope, reg, need_const_idx, is_force);
// This must be after the array word elaboration above!
if (reg->get_scalar() &&
use_sel != index_component_t::SEL_NONE) {
cerr << get_fileline() << ": error: can not select part of ";
if (reg->data_type() == IVL_VT_REAL) cerr << "real: ";
else cerr << "scalar: ";
cerr << reg->name() << endl;
des->errors += 1;
return 0;
}
if (use_sel == index_component_t::SEL_PART) {
NetAssign_*lv = new NetAssign_(reg);
elaborate_lval_net_part_(des, scope, lv, is_force);
return lv;
}
if (use_sel == index_component_t::SEL_IDX_UP ||
use_sel == index_component_t::SEL_IDX_DO) {
NetAssign_*lv = new NetAssign_(reg);
elaborate_lval_net_idx_(des, scope, lv, use_sel, need_const_idx, is_force);
return lv;
}
if (use_sel == index_component_t::SEL_BIT) {
if (reg->darray_type()) {
NetAssign_*lv = new NetAssign_(reg);
elaborate_lval_darray_bit_(des, scope, lv, is_force);
return lv;
} else {
NetAssign_*lv = new NetAssign_(reg);
elaborate_lval_net_bit_(des, scope, lv, need_const_idx, is_force);
return lv;
}
}
ivl_assert(*this, use_sel == index_component_t::SEL_NONE);
if (reg->type()==NetNet::UNRESOLVED_WIRE && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("variable");
des->errors += 1;
return 0;
}
/* No select expressions. */
NetAssign_*lv = new NetAssign_(reg);
lv->set_signed(reg->get_signed());
return lv;
}
NetAssign_*PEIdent::elaborate_lval_array_(Design *des, NetScope *,
bool is_force, NetNet *reg) const
{
if (!gn_system_verilog()) {
cerr << get_fileline() << ": error: Assignment to an entire"
" array or to an array slice requires SystemVerilog."
<< endl;
des->errors += 1;
return 0;
}
const name_component_t&name_tail = path_.back();
if (name_tail.index.empty()) {
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("array");
des->errors += 1;
return 0;
}
NetAssign_*lv = new NetAssign_(reg);
return lv;
}
cerr << get_fileline() << ": sorry: Assignment to an "
" array slice is not yet supported."
<< endl;
des->errors += 1;
return 0;
}
NetAssign_* PEIdent::elaborate_lval_net_word_(Design*des,
NetScope*scope,
NetNet*reg,
bool need_const_idx,
bool is_force) const
{
const name_component_t&name_tail = path_.back();
ivl_assert(*this, !name_tail.index.empty());
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_word_: "
<< "Handle as n-dimensional array." << endl;
}
if (name_tail.index.size() < reg->unpacked_dimensions()) {
cerr << get_fileline() << ": error: Array " << reg->name()
<< " needs " << reg->unpacked_dimensions() << " indices,"
<< " but got only " << name_tail.index.size() << "." << endl;
des->errors += 1;
return 0;
}
// Make sure there are enough indices to address an array element.
const index_component_t&index_head = name_tail.index.front();
if (index_head.sel == index_component_t::SEL_PART) {
cerr << get_fileline() << ": error: cannot perform a part "
<< "select on array " << reg->name() << "." << endl;
des->errors += 1;
return 0;
}
// Evaluate all the index expressions into an
// "unpacked_indices" array.
list<NetExpr*>unpacked_indices;
list<long> unpacked_indices_const;
indices_flags flags;
indices_to_expressions(des, scope, this,
name_tail.index, reg->unpacked_dimensions(),
false,
flags,
unpacked_indices,
unpacked_indices_const);
NetExpr*canon_index = 0;
if (flags.invalid) {
// Nothing to do.
} else if (flags.undefined) {
cerr << get_fileline() << ": warning: "
<< "ignoring undefined l-value array access "
<< reg->name() << as_indices(unpacked_indices)
<< "." << endl;
} else if (flags.variable) {
if (need_const_idx) {
cerr << get_fileline() << ": error: array '" << reg->name()
<< "' index must be a constant in this context." << endl;
des->errors += 1;
return 0;
}
ivl_assert(*this, unpacked_indices.size() == reg->unpacked_dimensions());
canon_index = normalize_variable_unpacked(reg, unpacked_indices);
} else {
ivl_assert(*this, unpacked_indices_const.size() == reg->unpacked_dimensions());
canon_index = normalize_variable_unpacked(reg, unpacked_indices_const);
if (canon_index == 0) {
cerr << get_fileline() << ": warning: "
<< "ignoring out of bounds l-value array access "
<< reg->name() << as_indices(unpacked_indices_const)
<< "." << endl;
}
}
// Ensure invalid array accesses are ignored.
if (canon_index == 0)
canon_index = new NetEConst(verinum(verinum::Vx));
canon_index->set_line(*this);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_word_: "
<< "canon_index=" << *canon_index << endl;
}
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
NetEConst*canon_const = dynamic_cast<NetEConst*>(canon_index);
if (!canon_const || reg->test_part_driven(reg->vector_width() - 1, 0,
canon_const->value().as_long())) {
report_mixed_assignment_conflict_("array word");
des->errors += 1;
return 0;
}
}
NetAssign_*lv = new NetAssign_(reg);
lv->set_word(canon_index);
if (debug_elaborate)
cerr << get_fileline() << ": debug: Set array word=" << *canon_index << endl;
/* An array word may also have part selects applied to them. */
index_component_t::ctype_t use_sel = index_component_t::SEL_NONE;
if (name_tail.index.size() > reg->unpacked_dimensions())
use_sel = name_tail.index.back().sel;
if (reg->get_scalar() &&
use_sel != index_component_t::SEL_NONE) {
cerr << get_fileline() << ": error: can not select part of ";
if (reg->data_type() == IVL_VT_REAL) cerr << "real";
else cerr << "scalar";
cerr << " array word: " << reg->name()
<< as_indices(unpacked_indices) << endl;
des->errors += 1;
return 0;
}
if (use_sel == index_component_t::SEL_BIT)
elaborate_lval_net_bit_(des, scope, lv, need_const_idx, is_force);
if (use_sel == index_component_t::SEL_PART)
elaborate_lval_net_part_(des, scope, lv, is_force);
if (use_sel == index_component_t::SEL_IDX_UP ||
use_sel == index_component_t::SEL_IDX_DO)
elaborate_lval_net_idx_(des, scope, lv, use_sel,
need_const_idx, is_force);
return lv;
}
bool PEIdent::elaborate_lval_net_bit_(Design*des,
NetScope*scope,
NetAssign_*lv,
bool need_const_idx,
bool is_force) const
{
list<long>prefix_indices;
bool rc = calculate_packed_indices_(des, scope, lv->sig(), prefix_indices);
if (!rc) return false;
const name_component_t&name_tail = path_.back();
ivl_assert(*this, !name_tail.index.empty());
const index_component_t&index_tail = name_tail.index.back();
ivl_assert(*this, index_tail.msb != 0);
ivl_assert(*this, index_tail.lsb == 0);
NetNet*reg = lv->sig();
ivl_assert(*this, reg);
// Bit selects have a single select expression. Evaluate the
// constant value and treat it as a part select with a bit
// width of 1.
NetExpr*mux = elab_and_eval(des, scope, index_tail.msb, -1);
long lsb = 0;
if (mux && mux->expr_type() == IVL_VT_REAL) {
cerr << get_fileline() << ": error: Index expression for "
<< reg->name() << "[" << *mux
<< "] cannot be a real value." << endl;
des->errors += 1;
return false;
}
if (NetEConst*index_con = dynamic_cast<NetEConst*> (mux)) {
// The index has a constant defined value.
if (index_con->value().is_defined()) {
lsb = index_con->value().as_long();
mux = 0;
// The index is undefined and this is a packed array.
} else if (prefix_indices.size()+2 <= reg->packed_dims().size()) {
long loff;
unsigned long lwid;
bool rcl = reg->sb_to_slice(prefix_indices, lsb, loff, lwid);
ivl_assert(*this, rcl);
if (warn_ob_select) {
cerr << get_fileline()
<< ": warning: L-value packed array select of "
<< reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << " has an undefined index." << endl;
}
lv->set_part(new NetEConst(verinum(verinum::Vx)), lwid);
return true;
// The index is undefined and this is a bit select.
} else {
if (warn_ob_select) {
cerr << get_fileline()
<< ": warning: L-value bit select of "
<< reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << " has an undefined index." << endl;
}
lv->set_part(new NetEConst(verinum(verinum::Vx)), 1);
return true;
}
}
if (debug_elaborate && (reg->type()==NetNet::UNRESOLVED_WIRE)) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_bit_: "
<< "Try to assign bits of variable which is also continuously assigned."
<< endl;
}
if (prefix_indices.size()+2 <= reg->packed_dims().size()) {
// Special case: this is a slice of a multi-dimensional
// packed array. For example:
// reg [3:0][7:0] x;
// x[2] = ...
// This shows up as the prefix_indices being too short
// for the packed dimensions of the vector. What we do
// here is convert to a "slice" of the vector.
if (mux == 0) {
long loff;
unsigned long lwid;
bool rcl = reg->sb_to_slice(prefix_indices, lsb, loff, lwid);
ivl_assert(*this, rcl);
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
if (reg->test_part_driven(loff+lwid-1, loff)) {
report_mixed_assignment_conflict_("slice");
des->errors += 1;
return false;
}
}
lv->set_part(new NetEConst(verinum(loff)), lwid);
} else {
unsigned long lwid;
mux = normalize_variable_slice_base(prefix_indices, mux,
reg, lwid);
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("slice");
des->errors += 1;
return false;
}
lv->set_part(mux, lwid);
}
} else if (reg->data_type() == IVL_VT_STRING) {
ivl_assert(*this, reg->type()!=NetNet::UNRESOLVED_WIRE);
// Special case: This is a select of a string
// variable. The target of the assignment is a character
// select of a string. Force the r-value to be an 8bit
// vector and set the "part" to be the character select
// expression. The code generator knows what to do with
// this.
if (debug_elaborate) {
cerr << get_fileline() << ": debug: "
<< "Bit select of string becomes character select." << endl;
}
if (!mux)
mux = new NetEConst(verinum(lsb));
lv->set_part(mux, &netvector_t::atom2s8);
} else if (mux) {
// Non-constant bit mux. Correct the mux for the range
// of the vector, then set the l-value part select
// expression.
if (need_const_idx) {
cerr << get_fileline() << ": error: '" << reg->name()
<< "' bit select must be a constant in this context."
<< endl;
des->errors += 1;
return false;
}
mux = normalize_variable_bit_base(prefix_indices, mux, reg);
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("bit select");
des->errors += 1;
return false;
}
lv->set_part(mux, 1);
} else if (reg->vector_width() == 1 && reg->sb_is_valid(prefix_indices,lsb)) {
// Constant bit mux that happens to select the only bit
// of the l-value. Don't bother with any select at all.
// If there's a continuous assignment, it must be a conflict.
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("bit select");
des->errors += 1;
return false;
}
} else {
// Constant bit select that does something useful.
long loff = reg->sb_to_idx(prefix_indices,lsb);
if (warn_ob_select && (loff < 0 || loff >= (long)reg->vector_width())) {
cerr << get_fileline() << ": warning: bit select "
<< reg->name() << "[" <<lsb<<"]"
<< " is out of range." << endl;
}
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
if (reg->test_part_driven(loff, loff)) {
report_mixed_assignment_conflict_("bit select");
des->errors += 1;
return false;
}
}
lv->set_part(new NetEConst(verinum(loff)), 1);
}
return true;
}
bool PEIdent::elaborate_lval_darray_bit_(Design*des,
NetScope*scope,
NetAssign_*lv,
bool is_force) const
{
const name_component_t&name_tail = path_.back();
ivl_assert(*this, !name_tail.index.empty());
// For now, only support single-dimension dynamic arrays.
ivl_assert(*this, name_tail.index.size() == 1);
if ((lv->sig()->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, lv->sig()->coerced_to_uwire());
report_mixed_assignment_conflict_("darray word");
des->errors += 1;
return false;
}
const index_component_t&index_tail = name_tail.index.back();
ivl_assert(*this, index_tail.msb != 0);
ivl_assert(*this, index_tail.lsb == 0);
// Evaluate the select expression...
NetExpr*mux = elab_and_eval(des, scope, index_tail.msb, -1);
lv->set_word(mux);
return true;
}
bool PEIdent::elaborate_lval_net_part_(Design*des,
NetScope*scope,
NetAssign_*lv,
bool is_force) const
{
if (lv->sig()->data_type() == IVL_VT_STRING) {
cerr << get_fileline() << ": error: Cannot part select assign to a string ('"
<< lv->sig()->name() << "')." << endl;
des->errors += 1;
return false;
}
list<long> prefix_indices;
bool rc = calculate_packed_indices_(des, scope, lv->sig(), prefix_indices);
ivl_assert(*this, rc);
// The range expressions of a part select must be
// constant. The calculate_parts_ function calculates the
// values into msb and lsb.
long msb, lsb;
bool parts_defined_flag;
bool flag = calculate_parts_(des, scope, msb, lsb, parts_defined_flag);
if (!flag) return false;
NetNet*reg = lv->sig();
ivl_assert(*this, reg);
if (! parts_defined_flag) {
if (warn_ob_select) {
cerr << get_fileline()
<< ": warning: L-value part select of "
<< reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << " has an undefined index." << endl;
}
// Use a width of two here so we can distinguish between an
// undefined bit or part select.
lv->set_part(new NetEConst(verinum(verinum::Vx)), 2);
return true;
}
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
if (reg->test_part_driven(msb, lsb)) {
report_mixed_assignment_conflict_("part select");
des->errors += 1;
return false;
}
}
const netranges_t&packed = reg->packed_dims();
long loff, moff;
if (prefix_indices.size()+1 < packed.size()) {
// If there are fewer indices then there are packed
// dimensions, then this is a range of slices. Calculate
// it into a big slice.
bool lrc, mrc;
unsigned long lwid, mwid;
lrc = reg->sb_to_slice(prefix_indices, lsb, loff, lwid);
mrc = reg->sb_to_slice(prefix_indices, msb, moff, mwid);
if (!mrc || !lrc) {
cerr << get_fileline() << ": error: ";
cerr << "Part-select [" << msb << ":" << lsb;
cerr << "] exceeds the declared bounds for ";
cerr << reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << "." << endl;
des->errors += 1;
return 0;
}
assert(lwid == mwid);
moff += mwid - 1;
} else {
loff = reg->sb_to_idx(prefix_indices,lsb);
moff = reg->sb_to_idx(prefix_indices,msb);
}
if (moff < loff) {
cerr << get_fileline() << ": error: part select "
<< reg->name() << "[" << msb<<":"<<lsb<<"]"
<< " is reversed." << endl;
des->errors += 1;
return false;
}
unsigned long wid = moff - loff + 1;
// Special case: The range winds up selecting the entire
// vector. Treat this as no part select at all.
if (loff == 0 && wid == reg->vector_width()) {
return true;
}
/* If the part select extends beyond the extremes of the
variable, then output a warning. Note that loff is
converted to normalized form so is relative the
variable pins. */
if (warn_ob_select && (loff < 0 || moff >= (long)reg->vector_width())) {
cerr << get_fileline() << ": warning: Part select "
<< reg->name() << "[" << msb<<":"<<lsb<<"]"
<< " is out of range." << endl;
}
lv->set_part(new NetEConst(verinum(loff)), wid);
return true;
}
bool PEIdent::elaborate_lval_net_idx_(Design*des,
NetScope*scope,
NetAssign_*lv,
index_component_t::ctype_t use_sel,
bool need_const_idx,
bool is_force) const
{
if (lv->sig()->data_type() == IVL_VT_STRING) {
cerr << get_fileline() << ": error: Cannot index part select assign to a string ('"
<< lv->sig()->name() << "')." << endl;
des->errors += 1;
return false;
}
list<long>prefix_indices;
bool rc = calculate_packed_indices_(des, scope, lv->sig(), prefix_indices);
ivl_assert(*this, rc);
const name_component_t&name_tail = path_.back();;
ivl_assert(*this, !name_tail.index.empty());
const index_component_t&index_tail = name_tail.index.back();
ivl_assert(*this, index_tail.msb != 0);
ivl_assert(*this, index_tail.lsb != 0);
NetNet*reg = lv->sig();
ivl_assert(*this, reg);
unsigned long wid;
calculate_up_do_width_(des, scope, wid);
NetExpr*base = elab_and_eval(des, scope, index_tail.msb, -1);
if (base && base->expr_type() == IVL_VT_REAL) {
cerr << get_fileline() << ": error: Indexed part select base "
"expression for ";
cerr << lv->sig()->name() << "[" << *base;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] cannot be a real value." << endl;
des->errors += 1;
return 0;
}
ivl_select_type_t sel_type = IVL_SEL_OTHER;
// Handle the special case that the base is constant. For this
// case we can reduce the expression.
if (NetEConst*base_c = dynamic_cast<NetEConst*> (base)) {
// For the undefined case just let the constant pass and
// we will handle it in the code generator.
if (base_c->value().is_defined()) {
long lsv = base_c->value().as_long();
long rel_base = 0;
// Get the signal range.
const netranges_t&packed = reg->packed_dims();
if (prefix_indices.size()+1 < reg->packed_dims().size()) {
// Here we are selecting one or more sub-arrays.
// Make this work by finding the indexed sub-arrays and
// creating a generated slice that spans the whole range.
long loff, moff;
unsigned long lwid, mwid;
bool lrc, mrc;
mrc = reg->sb_to_slice(prefix_indices, lsv, moff, mwid);
if (use_sel == index_component_t::SEL_IDX_UP)
lrc = reg->sb_to_slice(prefix_indices, lsv+wid-1, loff, lwid);
else
lrc = reg->sb_to_slice(prefix_indices, lsv-wid+1, loff, lwid);
if (!mrc || !lrc) {
cerr << get_fileline() << ": error: ";
cerr << "Part-select [" << lsv;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] exceeds the declared bounds for ";
cerr << reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << "." << endl;
des->errors += 1;
return 0;
}
ivl_assert(*this, lwid == mwid);
if (moff > loff) {
rel_base = loff;
wid = moff + mwid - loff;
} else {
rel_base = moff;
wid = loff + lwid - moff;
}
} else {
long offset = 0;
// We want the last range, which is where we work.
const netrange_t&rng = packed.back();
if (((rng.get_msb() < rng.get_lsb()) &&
use_sel == index_component_t::SEL_IDX_UP) ||
((rng.get_msb() > rng.get_lsb()) &&
use_sel == index_component_t::SEL_IDX_DO)) {
offset = -wid + 1;
}
rel_base = reg->sb_to_idx(prefix_indices,lsv) + offset;
}
delete base;
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
if (reg->test_part_driven(rel_base+wid-1, rel_base)) {
report_mixed_assignment_conflict_("part select");
des->errors += 1;
return false;
}
}
/* If we cover the entire lvalue just skip the select. */
if (rel_base == 0 && wid == reg->vector_width()) return true;
base = new NetEConst(verinum(rel_base));
if (warn_ob_select) {
if (rel_base < 0) {
cerr << get_fileline() << ": warning: " << reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << "[" << lsv;
if (use_sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is selecting before vector." << endl;
}
if (rel_base + wid > reg->vector_width()) {
cerr << get_fileline() << ": warning: " << reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << "[" << lsv;
if (use_sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is selecting after vector." << endl;
}
}
} else if (warn_ob_select) {
cerr << get_fileline() << ": warning: L-value indexed part "
<< "select of " << reg->name();
if (reg->unpacked_dimensions() > 0) cerr << "[]";
cerr << " has an undefined base." << endl;
}
} else {
if (need_const_idx) {
cerr << get_fileline() << ": error: '" << reg->name()
<< "' base index must be a constant in this context."
<< endl;
des->errors += 1;
return false;
}
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("part select");
des->errors += 1;
return false;
}
ivl_assert(*this, prefix_indices.size()+1 == reg->packed_dims().size());
/* Correct the mux for the range of the vector. */
if (use_sel == index_component_t::SEL_IDX_UP) {
base = normalize_variable_part_base(prefix_indices, base,
reg, wid, true);
sel_type = IVL_SEL_IDX_UP;
} else {
// This is assumed to be a SEL_IDX_DO.
base = normalize_variable_part_base(prefix_indices, base,
reg, wid, false);
sel_type = IVL_SEL_IDX_DOWN;
}
}
if (debug_elaborate)
cerr << get_fileline() << ": debug: Set part select width="
<< wid << ", base=" << *base << endl;
lv->set_part(base, wid, sel_type);
return true;
}
/*
* When the l-value turns out to be a class object, this method is
* called with the bound variable, and the method path. For example,
* if path_=a.b.c and a.b binds to the variable, then sig is b, and
* member_path=c. if path_=obj.base.x, and base_path=obj, then sig is
* obj, and member_path=base.x.
*/
NetAssign_* PEIdent::elaborate_lval_net_class_member_(Design*des, NetScope*scope,
const netclass_t *class_type, NetNet*sig,
pform_name_t member_path) const
{
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_class_member_: "
<< "l-value is property " << member_path
<< " of " << sig->name() << "." << endl;
}
ivl_assert(*this, class_type);
// Iterate over the member_path. This handles nested class
// object, by generating nested NetAssign_ object. We start
// with lv==0, so the front of the member_path is the member
// of the outermost class. This generates an lv from sig. Then
// iterate over the remaining of the member_path, replacing
// the outer lv with an lv that nests the lv from the previous
// iteration.
NetAssign_*lv = 0;
do {
// Start with the first component of the member path...
perm_string method_name = peek_head_name(member_path);
// Pull that component from the member_path. We need to
// know the current member being worked on, and will
// need to know if there are more members to be worked on.
name_component_t member_cur = member_path.front();
member_path.pop_front();
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_class_member_: "
<< "Processing member_cur=" << member_cur
<< endl;
}
// Make sure the property is really present in the class. If
// not, then generate an error message and return an error.
int pidx = class_type->property_idx_from_name(method_name);
if (pidx < 0) {
cerr << get_fileline() << ": error: Class " << class_type->get_name()
<< " does not have a property " << method_name << "." << endl;
des->errors += 1;
return 0;
}
property_qualifier_t qual = class_type->get_prop_qual(pidx);
if (qual.test_local() && ! class_type->test_scope_is_method(scope)) {
cerr << get_fileline() << ": error: "
<< "Local property " << class_type->get_prop_name(pidx)
<< " is not accessible (l-value) in this context."
<< " (scope=" << scope_path(scope) << ")" << endl;
des->errors += 1;
} else if (qual.test_static()) {
// Special case: this is a static property. Ignore the
// "this" sig and use the property itself, which is not
// part of the sig, as the l-value.
NetNet*psig = class_type->find_static_property(method_name);
ivl_assert(*this, psig);
lv = new NetAssign_(psig);
return lv;
} else if (qual.test_const()) {
if (class_type->get_prop_initialized(pidx)) {
cerr << get_fileline() << ": error: "
<< "Property " << class_type->get_prop_name(pidx)
<< " is constant in this method."
<< " (scope=" << scope_path(scope) << ")" << endl;
des->errors++;
} else if (scope->basename() != "new" && scope->basename() != "new@") {
cerr << get_fileline() << ": error: "
<< "Property " << class_type->get_prop_name(pidx)
<< " is constant in this method."
<< " (scope=" << scope_path(scope) << ")" << endl;
des->errors++;
} else {
// Mark this property as initialized. This is used
// to know that we have initialized the constant
// object so the next assignment will be marked as
// illegal.
class_type->set_prop_initialized(pidx);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_method_class_member_: "
<< "Found initializers for property " << class_type->get_prop_name(pidx) << endl;
}
}
}
lv = lv? new NetAssign_(lv) : new NetAssign_(sig);
lv->set_property(method_name, pidx);
// Now get the type of the property.
ivl_type_t ptype = class_type->get_prop_type(pidx);
const netdarray_t*mtype = dynamic_cast<const netdarray_t*> (ptype);
if (mtype) {
if (! member_cur.index.empty()) {
cerr << get_fileline() << ": sorry: "
<< "Array index of array properties not supported."
<< endl;
des->errors += 1;
}
}
NetExpr *canon_index = nullptr;
if (!member_cur.index.empty()) {
if (const netsarray_t *stype = dynamic_cast<const netsarray_t*>(ptype)) {
canon_index = make_canonical_index(des, scope, this,
member_cur.index, stype, false);
} else {
cerr << get_fileline() << ": error: "
<< "Index expressions don't apply to this type of property." << endl;
des->errors++;
}
}
if (const netuarray_t *tmp_ua = dynamic_cast<const netuarray_t*>(ptype)) {
const auto &dims = tmp_ua->static_dimensions();
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_method_class_member_: "
<< "Property " << class_type->get_prop_name(pidx)
<< " has " << dims.size() << " dimensions, "
<< " got " << member_cur.index.size() << " indices." << endl;
if (canon_index) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_method_class_member_: "
<< "Canonical index is:" << *canon_index << endl;
}
}
if (dims.size() != member_cur.index.size()) {
cerr << get_fileline() << ": error: "
<< "Got " << member_cur.index.size() << " indices, "
<< "expecting " << dims.size()
<< " to index the property " << class_type->get_prop_name(pidx) << "." << endl;
des->errors++;
}
}
if (canon_index)
lv->set_word(canon_index);
// If the current member is a class object, then get the
// type. We may wind up iterating, and need the proper
// class type.
class_type = dynamic_cast<const netclass_t*>(ptype);
} while (!member_path.empty());
return lv;
}
/*
* This method is caled to handle l-value identifiers that are packed
* structs. The lv is already attached to the variable, so this method
* calculates the part select that is defined by the member_path. For
* example, if the path_ is main.sub.sub_local, and the variable is
* main, then we know at this point that main is a packed struct, and
* lv contains the reference to the bound variable (main). In this
* case member_path==sub.sub_local, and it is up to this method to
* work out the part select that the member_path represents.
*/
bool PEIdent::elaborate_lval_net_packed_member_(Design*des, NetScope*scope,
NetAssign_*lv,
pform_name_t member_path,
bool is_force) const
{
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "path_=" << path_
<< " member_path=" << member_path
<< endl;
}
NetNet*reg = lv->sig();
ivl_assert(*this, reg);
const netstruct_t*struct_type = reg->struct_type();
ivl_assert(*this, struct_type);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "Type=" << *struct_type
<< endl;
}
if (! struct_type->packed()) {
cerr << get_fileline() << ": sorry: Only packed structures "
<< "are supported in l-value." << endl;
des->errors += 1;
return false;
}
// Looking for the base name. We need that to know about
// indices we may need to apply. This is to handle the case
// that the base is an array of structs, and not just a
// struct.
pform_name_t::const_reverse_iterator name_idx = path_.name.rbegin();
for (size_t idx = 1 ; idx < member_path.size() ; idx += 1)
++ name_idx;
if (name_idx->name != peek_head_name(member_path)) {
cerr << get_fileline() << ": internal error: "
<< "name_idx=" << name_idx->name
<< ", expecting member_name=" << peek_head_name(member_path)
<< endl;
des->errors += 1;
return false;
}
ivl_assert(*this, name_idx->name == peek_head_name(member_path));
++ name_idx;
const name_component_t&name_base = *name_idx;
// Shouldn't be seeing unpacked arrays of packed structs...
ivl_assert(*this, reg->unpacked_dimensions() == 0);
// These make up the "part" select that is the equivilent of
// following the member path through the nested structs. To
// start with, the off[set] is zero, and use_width is the
// width of the entire variable. The first member_comp is at
// some offset within the variable, and will have a reduced
// width. As we step through the member_path the off
// increases, and use_width shrinks.
unsigned long off = 0;
unsigned long use_width = struct_type->packed_width();
ivl_type_t member_type;
pform_name_t completed_path;
do {
const name_component_t member_comp = member_path.front();
const perm_string&member_name = member_comp.name;
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "Processing member_comp=" << member_comp
<< " (completed_path=" << completed_path << ")"
<< endl;
}
// This is a packed member, so the name is of the form
// "a.b[...].c[...]" which means that the path_ must have at
// least 2 components. We are processing "c[...]" at that
// point (otherwise known as member_name) and we have a
// reference to it in member_comp.
// The member_path is the members we want to follow for the
// variable. For example, main[N].a.b may have main[N] as the
// base_name, and member_path=a.b. The member_name is the
// start of the member_path, and is "a". The member_name
// should be a member of the struct_type type.
// Calculate the offset within the packed structure of the
// member, and any indices. We will add in the offset of the
// struct into the packed array later. Note that this works
// for packed unions as well (although the offset will be 0
// for union members).
unsigned long tmp_off;
const netstruct_t::member_t* member = struct_type->packed_member(member_name, tmp_off);
if (member == 0) {
cerr << get_fileline() << ": error: Member " << member_name
<< " is not a member of struct type of "
<< reg->name()
<< "." << completed_path << endl;
des->errors += 1;
return false;
}
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "Member type: " << *(member->net_type)
<< endl;
}
off += tmp_off;
ivl_assert(*this, use_width >= (unsigned long)member->net_type->packed_width());
use_width = member->net_type->packed_width();
// At this point, off and use_width are the part select
// expressed by the member_comp, which is a member of the
// struct. We can further refine the part select with any
// indices that might be present.
// Get the index component type. At this point, we only
// support bit select or none.
index_component_t::ctype_t use_sel = index_component_t::SEL_NONE;
if (!member_comp.index.empty())
use_sel = member_comp.index.back().sel;
if (use_sel != index_component_t::SEL_NONE
&& use_sel != index_component_t::SEL_BIT
&& use_sel != index_component_t::SEL_PART) {
cerr << get_fileline() << ": sorry: Assignments to part selects of "
"a struct member are not yet supported." << endl;
des->errors += 1;
return false;
}
member_type = member->net_type;
if (const netvector_t*mem_vec = dynamic_cast<const netvector_t*>(member->net_type)) {
// If the member type is a netvector_t, then it is a
// vector of atom or scaler objects. For example, if the
// l-value expression is "foo.member[1][2]",
// then the member should be something like:
// ... logic [h:l][m:n] member;
// There should be index expressions index the vector
// down, but there doesn't need to be all of them. We
// can, for example, be selecting a part of the vector.
// We only need to process this if there are any
// index expressions. If not, then the packed
// vector can be handled atomically.
// In any case, this should be the tail of the
// member_path, because the array element of this
// kind of array cannot be a struct.
if (!member_comp.index.empty()) {
// These are the dimensions defined by the type
const netranges_t&mem_packed_dims = mem_vec->packed_dims();
if (member_comp.index.size() > mem_packed_dims.size()) {
cerr << get_fileline() << ": error: "
<< "Too many index expressions for member." << endl;
des->errors += 1;
return false;
}
// Evaluate all but the last index expression, into prefix_indices.
list<long>prefix_indices;
bool rc = evaluate_index_prefix(des, scope, prefix_indices, member_comp.index);
ivl_assert(*this, rc);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "prefix_indices.size()==" << prefix_indices.size()
<< ", mem_packed_dims.size()==" << mem_packed_dims.size()
<< " (netvector_t context)"
<< endl;
}
long tail_off = 0;
unsigned long tail_wid = 0;
rc = calculate_part(this, des, scope, member_comp.index.back(), tail_off, tail_wid);
ivl_assert(*this, rc);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "calculate_part for tail returns tail_off=" << tail_off
<< ", tail_wid=" << tail_wid
<< endl;
}
// Now use the prefix_to_slice function to calculate the
// offset and width of the addressed slice of the member.
long loff;
unsigned long lwid;
prefix_to_slice(mem_packed_dims, prefix_indices, tail_off, loff, lwid);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "Calculate loff=" << loff << " lwid=" << lwid
<< " tail_off=" << tail_off << " tail_wid=" << tail_wid
<< " off=" << off << " use_width=" << use_width
<< endl;
}
off += loff;
use_width = lwid * tail_wid;
member_type = nullptr;
}
// The netvector_t only has atom elements, to
// there is no next struct type.
struct_type = 0;
} else if (const netparray_t*array = dynamic_cast<const netparray_t*> (member->net_type)) {
// If the member is a parray, then the elements
// are themselves packed object, including
// possibly a struct. Handle this by taking the
// part select of the current part of the
// variable, then stepping to the element type to
// possibly iterate through more of the member_path.
ivl_assert(*this, array->packed());
ivl_assert(*this, !member_comp.index.empty());
// These are the dimensions defined by the type
const netranges_t&mem_packed_dims = array->static_dimensions();
if (member_comp.index.size() != mem_packed_dims.size()) {
cerr << get_fileline() << ": error: "
<< "Incorrect number of index expressions for member "
<< member_name << "." << endl;
des->errors += 1;
return false;
}
// Evaluate all but the last index expression, into prefix_indices.
list<long>prefix_indices;
bool rc = evaluate_index_prefix(des, scope, prefix_indices, member_comp.index);
ivl_assert(*this, rc);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "prefix_indices.size()==" << prefix_indices.size()
<< ", mem_packed_dims.size()==" << mem_packed_dims.size()
<< " (netparray_t context)"
<< endl;
}
// Evaluate the last index expression into a constant long.
NetExpr*texpr = elab_and_eval(des, scope, member_comp.index.back().msb, -1, true);
long tmp;
if (texpr == 0 || !eval_as_long(tmp, texpr)) {
cerr << get_fileline() << ": error: "
<< "Array index expressions for member " << member_name
<< " must be constant here." << endl;
des->errors += 1;
return false;
}
delete texpr;
// Now use the prefix_to_slice function to calculate the
// offset and width of the addressed slice of the member.
long loff;
unsigned long lwid;
prefix_to_slice(mem_packed_dims, prefix_indices, tmp, loff, lwid);
ivl_type_t element_type = array->element_type();
long element_width = element_type->packed_width();
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "parray subselection loff=" << loff
<< ", lwid=" << lwid
<< ", element_width=" << element_width
<< endl;
}
// The width and offset calculated from the
// indices is actually in elements, and not
// bits. In fact, in this context, the lwid should
// come down to 1 (one element).
off += loff * element_width;
ivl_assert(*this, lwid==1);
use_width = element_width;
// To move on to the next component in the member
// path, get the element type. For example, for
// the path a.b[1].c, we are processing b[1] here,
// and the element type should be a netstruct_t
// that will wind up containing the member c.
struct_type = dynamic_cast<const netstruct_t*> (element_type);
} else if (const netstruct_t*tmp_struct = dynamic_cast<const netstruct_t*> (member->net_type)) {
// If the member is itself a struct, then get
// ready to go on to the next iteration.
struct_type = tmp_struct;
} else if (const netenum_t*tmp_enum = dynamic_cast<const netenum_t*> (member->net_type)) {
// If the element is an enum, then we don't have
// anything special to do.
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "Tail element is an enum: " << *tmp_enum
<< endl;
}
struct_type = 0;
} else {
// Unknown type?
cerr << get_fileline() << ": internal error: "
<< "Unexpected member type? " << *(member->net_type)
<< endl;
des->errors += 1;
return false;
}
// Complete this component of the path, mark it
// completed, and set up for the next component.
completed_path .push_back(member_comp);
member_path.pop_front();
} while (!member_path.empty() && struct_type != 0);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lval_net_packed_member_: "
<< "After processing member_path, "
<< "off=" << off
<< ", use_width=" << use_width
<< ", completed_path=" << completed_path
<< ", member_path=" << member_path
<< endl;
}
// The dimensions in the expression must match the packed
// dimensions that are declared for the variable. For example,
// if foo is a packed array of struct, then this expression
// must be "b[n][m]" with the right number of dimensions to
// match the declaration of "b".
// Note that one of the packed dimensions is the packed struct
// itself.
ivl_assert(*this, name_base.index.size()+1 == reg->packed_dimensions());
// Generate an expression that takes the input array of
// expressions and generates a canonical offset into the
// packed array.
NetExpr*packed_base = 0;
if (reg->packed_dimensions() > 1) {
list<index_component_t>tmp_index = name_base.index;
index_component_t member_select;
member_select.sel = index_component_t::SEL_BIT;
member_select.msb = new PENumber(new verinum(off));
tmp_index.push_back(member_select);
packed_base = collapse_array_indices(des, scope, reg, tmp_index);
}
long tmp;
if (packed_base && eval_as_long(tmp, packed_base)) {
off = tmp;
delete packed_base;
packed_base = 0;
}
if ((reg->type()==NetNet::UNRESOLVED_WIRE) && !is_force) {
ivl_assert(*this, reg->coerced_to_uwire());
report_mixed_assignment_conflict_("variable");
des->errors += 1;
return false;
}
if (packed_base == 0) {
NetExpr *base = new NetEConst(verinum(off));
if (member_type)
lv->set_part(base, member_type);
else
lv->set_part(base, use_width);
return true;
}
// Oops, packed_base is not fully evaluated, so I don't know
// yet what to do with it.
cerr << get_fileline() << ": internal error: "
<< "I don't know how to handle this index expression? " << *packed_base << endl;
ivl_assert(*this, 0);
return false;
}
NetAssign_* PENumber::elaborate_lval(Design*des, NetScope*, bool, bool, bool) const
{
cerr << get_fileline() << ": error: Constant values not allowed "
<< "in l-value expressions." << endl;
des->errors += 1;
return 0;
}

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/zhouxs1023-iverilog.git
git@api.gitlife.ru:oschina-mirror/zhouxs1023-iverilog.git
oschina-mirror
zhouxs1023-iverilog
zhouxs1023-iverilog
master