It consists of optimized IP, tools, libraries, models, and example designs. It is designed with high efficiency and ease of use in mind, unleashing the full potential of AI acceleration on Xilinx FPGA and ACAP.
Learn More: Vitis AI Overview
Two options are available for installing the containers with the Vitis AI tools and resources.
Install Docker - if Docker not installed on your machine yet
At least 100GB of disk space for the disk partition running Docker
Clone the Vitis-AI repository to obtain the examples, reference code, and scripts.
git clone --recurse-submodules https://github.com/Xilinx/Vitis-AI
cd Vitis-AI
Note: The following commands are for the latest version of Vitis AI. For details and history click Run Docker Container
Download the latest Vitis AI Docker with the following command. This container runs on CPU.
docker pull xilinx/vitis-ai-cpu:latest
To run the docker, use command:
./docker_run.sh xilinx/vitis-ai-cpu:latest
There are two types of docker recipes provided - CPU recipe and GPU recipe. If you have a compatible nVidia graphics card with CUDA support, you could use GPU recipe; otherwise you could use CPU recipe.
CPU Docker
Use below commands to build the CPU docker:
cd setup/docker
./docker_build_cpu.sh
To run the CPU docker, use command:
./docker_run.sh xilinx/vitis-ai-cpu:latest
GPU Docker
Use below commands to build the GPU docker:
cd setup/docker
./docker_build_gpu.sh
To run the GPU docker, use command:
./docker_run.sh xilinx/vitis-ai-gpu:latest
Please use the file ./docker_run.sh as a reference for the docker launching scripts, you could make necessary modification to it according to your needs.
You can install Anaconda packages in a conda environment this way:
Vitis-AI /workspace > sudo conda install -n vitis-ai-caffe https://www.xilinx.com/bin/public/openDownload?filename=unilog-1.3.2-h7b12538_35.tar.bz2
For a downloaded file:
sudo conda install -n vitis-ai-caffe ./<conda_package>.tar.bz2
X11 Support for Running Vitis AI Docker with Alveo
If you are running Vitis AI docker with Alveo card and want to use X11 support for graphics (for example, some demo applications in VART and Vitis-AI-Library for Alveo need to display images or video), please add following line into the docker_run_params variable definition in docker_run.sh script:
-e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v $HOME/.Xauthority:/tmp/.Xauthority \
And after the docker starts up, run following command lines:
cp /tmp/.Xauthority ~/
sudo chown vitis-ai-user:vitis-ai-group ~/.Xauthority
Please note before running this script, please make sure either you have local X11 server running if you are using Windows based ssh terminal to connect to remote server, or you have run xhost + command at a command terminal if you are using Linux with Desktop. Also if you are using ssh to connect to the remote server, remember to enable X11 Forwarding option either with Windows ssh tools setting or with -X options in ssh command line.
Vitis AI offers a unified set of high-level C++/Python programming APIs to run AI applications across edge-to-cloud platforms, including DPU for Alveo, and DPU for Zynq Ultrascale+ MPSoC and Zynq-7000. It brings the benefits to easily port AI applications from cloud to edge and vice versa. 10 samples in VART Samples are available to help you get familiar with the unfied programming APIs.
ID | Example Name | Models | Framework | Notes |
---|---|---|---|---|
1 | resnet50 | ResNet50 | Caffe | Image classification with VART C++ APIs. |
2 | resnet50_pt | ResNet50 | Pytorch | Image classification with VART extension C++ APIs. |
3 | resnet50_ext | ResNet50 | Caffe | Image classification with VART extension C++ APIs. |
4 | resnet50_mt_py | ResNet50 | TensorFlow | Multi-threading image classification with VART Python APIs. |
5 | inception_v1_mt_py | Inception-v1 | TensorFlow | Multi-threading image classification with VART Python APIs. |
6 | pose_detection | SSD, Pose detection | Caffe | Pose detection with VART C++ APIs. |
7 | video_analysis | SSD | Caffe | Traffic detection with VART C++ APIs. |
8 | adas_detection | YOLO-v3 | Caffe | ADAS detection with VART C++ APIs. |
9 | segmentation | FPN | Caffe | Semantic segmentation with VART C++ APIs. |
10 | squeezenet_pytorch | Squeezenet | Pytorch | Image classification with VART C++ APIs. |
For more information, please refer to Vitis AI User Guide
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарии ( 0 )