1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/Python_Ai_Road-eat_tensorflow2_in_30_days

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
3-3,高阶API示范.md 13 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
gitlife-traslator Отправлено 03.12.2024 15:14 374a95e

Пример использования высокоуровневого API TensorFlow

Ниже приведён пример, демонстрирующий реализацию линейной регрессионной модели и DNN-модели бинарной классификации с использованием высокоуровневого API TensorFlow.

Высокоуровневый API TensorFlow в основном предоставляется классами-интерфейсами моделей, доступными в tf.keras.models.

Существует три способа построения моделей с использованием интерфейса Keras:

  • построение модели по слоям с помощью Sequential;
  • создание модели произвольной структуры с помощью функционального API;
  • построение пользовательской модели путём наследования от базового класса Model.

Здесь мы покажем, как построить модель с использованием Sequential для последовательного создания слоёв и как создать пользовательскую модель путём наследования от Model базового класса.

1. Линейная регрессионная модель

В этом примере мы используем Sequential для построения модели по слоям и используем встроенный метод model.fit для обучения модели (для начинающих).

1. Подготовка данных

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
from tensorflow.keras import models,layers,losses,metrics,optimizers

# Количество образцов
n = 400

# Генерация тестовых данных
X = tf.random.uniform([n,2],minval=-10,maxval=10)
w0 = tf.constant([[2.0],[-3.0]])
b0 = tf.constant([[3.0]])
Y = X@w0 + b0 + tf.random.normal([n,1],mean = 0.0,stddev= 2.0)  # @ означает умножение матриц, добавление нормального возмущения
# Визуализация данных

%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b")
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)

ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g")
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()

![](./data/3-3-01-Визуализация данных регрессии.png)

2. Определение модели

tf.keras.backend.clear_session()

model = models.Sequential()
model.add(layers.Dense(1,input_shape =(2,)))
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense (Dense)                (None, 1)                 3         
=================================================================
Total params: 3
Trainable params: 3
Non-trainable params: 0

3. Обучение модели

### Использование метода fit для обучения

model.compile(optimizer="adam",loss="mse",metrics=["mae"])
model.fit(X,Y,batch_size = 10,epochs = 200)

tf.print("w = ",model.layers[0].kernel)
tf.print("b = ",model.layers[0].bias)
Epoch 197/200
400/400 [==============================] - 0s 190us/sample - loss: 4.3977 - mae: 1.7129
Epoch 198/200
400/400 [==============================] - 0s 172us/sample - loss: 4.3918 - mae: 1.7117
Epoch 199/200
400/400 [==============================] - 0s 134us/sample - loss: 4.3861 - mae: 1.7106
Epoch 200/200
400/400 [==============================] - 0s 166us/sample - loss: 4.3786 - mae: 1.7092
w =  [[1.99339032]
 [-3.00866461]]
b =  [2.67018795]
# Визуализация результатов

%matplotlib inline
%config InlineBackend.figure_format = 'svg'

w,b = model.variables

plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
ax1.plot(X[:,0],w[0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)

ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
ax2.plot(X[:,1],w[1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)

plt.show()

![](./data/3-3-02-Визуализация результатов регрессии.png)

2. DNN модель бинарной классификации

В этом примере мы создаём пользовательскую модель, наследуя от базового класса Model, и строим собственный цикл обучения (для экспертов).

1. Подготовка данных

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers,losses,metrics,optimizers
%matplotlib inline
%config InlineBackend.figure_format = 'svg'

# Количество положительных и отрицательных образцов
n_positive,n_negative = 2000,2000

# Создание положительных образцов, распределение в виде маленьких кругов
r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0) ```
theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi) 
Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
Yp = tf.ones_like(r_p)

#生成负样本, 大圆环分布
r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi) 
Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
Yn = tf.zeros_like(r_n)

#汇总样本
X = tf.concat([Xp,Xn],axis = 0)
Y = tf.concat([Yp,Yn],axis = 0)

#样本洗牌
data = tf.concat([X,Y],axis = 1)
data = tf.random.shuffle(data)
X = data[:,:2]
Y = data[:,2:]


#可视化
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
plt.legend(["positive","negative"]);
ds_train = tf.data.Dataset.from_tensor_slices((X[0:n*3//4,:],Y[0:n*3//4,:])) \
     .shuffle(buffer_size = 1000).batch(20) \
     .prefetch(tf.data.experimental.AUTOTUNE) \
     .cache()

ds_valid = tf.data.Dataset.from_tensor_slices((X[n*3//4:,:],Y[n*3//4:,:])) \
     .batch(20) \
     .prefetch(tf.data.experimental.AUTOTUNE) \
     .cache()

2,定义模型

tf.keras.backend.clear_session()
class DNNModel(models.Model):
    def __init__(self):
        super(DNNModel, self).__init__()
        
    def build(self,input_shape):
        self.dense1 = layers.Dense(4,activation = "relu",name = "dense1") 
        self.dense2 = layers.Dense(8,activation = "relu",name = "dense2")
        self.dense3 = layers.Dense(1,activation = "sigmoid",name = "dense3")
        super(DNNModel,self).build(input_shape)
 
    # 正向传播
    @tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])  
    def call(self,x):
        x = self.dense1(x)
        x = self.dense2(x)
        y = self.dense3(x)
        return y

model = DNNModel()
model.build(input_shape =(None,2))

model.summary()
Model: "dnn_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense1 (Dense)               multiple                  12        
_________________________________________________________________
dense2 (Dense)               multiple                  40        
_________________________________________________________________
dense3 (Dense)               multiple                  9         
=================================================================
Total params: 61
Trainable params: 61
Non-trainable params: 0
_________________________________________________________________

3,训练模型

### 自定义训练循环

optimizer = optimizers.Adam(learning_rate=0.01)
loss_func = tf.keras.losses.BinaryCrossentropy()

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_metric = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')

valid_loss = tf.keras.metrics.Mean(name='valid_loss')
valid_metric = tf.keras.metrics.BinaryAccuracy(name='valid_accuracy')


@tf.function
def train_step(model, features, labels):
    with tf.GradientTape() as tape:
        predictions = model(features)
        loss = loss_func(labels, predictions)
    grads = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(grads, model.trainable_variables))

    train_loss.update_state(loss)
    train_metric.update_state(labels, predictions)

@tf.function
def valid_step(model, features, labels):
    predictions = model(features)
    batch_loss = loss_func(labels, predictions)
    valid_loss.update_state(batch_loss)
    valid_metric.update_state(labels, predictions)
    

def train_model(model,ds_train,ds_valid,epochs):
    for epoch in tf.range(1,epochs+1):
        for features, labels in ds_train:
            train_step(model,features,labels)

        for features, labels in ds_valid:
            valid_step(model,features,labels)

        logs = 'Epoch={},Loss:{},Accuracy:{},Valid Loss:{},Valid Accuracy:{}'
        
        if  epoch%100 ==0:
            printbar()
``` ```
tf.print(tf.strings.format(logs, (epoch,train_loss.result(),train_metric.result(),valid_loss.result(),valid_metric.result())))

train_loss.reset_states()
valid_loss.reset_states()
train_metric.reset_states()
valid_metric.reset_states()

train_model(model,ds_train,ds_valid,1000)
================================================================================17:35:02
Epoch=100,Loss:0.194088802,Accuracy:0.923064,Valid Loss:0.215538561,Valid Accuracy:0.904368
================================================================================17:35:22
Epoch=200,Loss:0.151239693,Accuracy:0.93768847,Valid Loss:0.181166962,Valid Accuracy:0.920664132
================================================================================17:35:43
Epoch=300,Loss:0.134556711,Accuracy:0.944247484,Valid Loss:0.171530813,Valid Accuracy:0.926396072
================================================================================17:36:04
Epoch=400,Loss:0.125722557,Accuracy:0.949172914,Valid Loss:0.16731061,Valid Accuracy:0.929318547
================================================================================17:36:24
Epoch=500,Loss:0.120216407,Accuracy:0.952525079,Valid Loss:0.164817035,Valid Accuracy:0.931044817
================================================================================17:36:44
Epoch=600,Loss:0.116434008,Accuracy:0.954830289,Valid Loss:0.163089141,Valid Accuracy:0.932202339
================================================================================17:37:05
Epoch=700,Loss:0.113658346,Accuracy:0.956433,Valid Loss:0.161804497,Valid Accuracy:0.933092058
================================================================================17:37:25
Epoch=800,Loss:0.111522928,Accuracy:0.957467675,Valid Loss:0.160796657,Valid Accuracy:0.93379426
================================================================================17:37:46
Epoch=900,Loss:0.109816991,Accuracy:0.958205402,Valid Loss:0.159987748,Valid Accuracy:0.934343576
================================================================================17:38:06
Epoch=1000,Loss:0.10841465,Accuracy:0.958805501,Valid Loss:0.159325734,Valid Accuracy:0.934785843
# 结果可视化
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))
ax1.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
ax1.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
ax1.legend(["positive","negative"]);
ax1.set_title("y_true");

Xp_pred = tf.boolean_mask(X,tf.squeeze(model(X)>=0.5),axis = 0)
Xn_pred = tf.boolean_mask(X,tf.squeeze(model(X)<0.5),axis = 0)

ax2.scatter(Xp_pred[:,0].numpy(),Xp_pred[:,1].numpy(),c = "r")
ax2.scatter(Xn_pred[:,0].numpy(),Xn_pred[:,1].numpy(),c = "g")
ax2.legend(["positive","negative"]);
ax2.set_title("y_pred");

Если у вас есть вопросы по содержанию этой книги, пожалуйста, оставьте комментарий в нашем публичном аккаунте «Алгоритмная кухня». Автор ответит на них, когда позволит время и возможности.

Вы также можете присоединиться к группе читателей для обсуждения, отправив сообщение с ключевым словом «присоединиться» через наш публичный аккаунт.

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/Python_Ai_Road-eat_tensorflow2_in_30_days.git
git@api.gitlife.ru:oschina-mirror/Python_Ai_Road-eat_tensorflow2_in_30_days.git
oschina-mirror
Python_Ai_Road-eat_tensorflow2_in_30_days
Python_Ai_Road-eat_tensorflow2_in_30_days
master