1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/Python_Ai_Road-eat_tensorflow2_in_30_days

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
6-2,训练模型的3种方法.md 15 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
gitlife-traslator Отправлено 03.12.2024 15:14 374a95e

6-2, 3 метода обучения модели

Обучение модели в основном включает три метода: встроенный метод fit, встроенный метод tran_on_batch и пользовательский цикл обучения.

Примечание: метод fit_generator не рекомендуется использовать в tf.keras, так как его функциональность уже включена в метод fit.

import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import *

# Печать временной разделительной линии
@tf.function
def printbar():
    today_ts = tf.timestamp() % (24 * 60 * 60)

    hour = tf.cast(today_ts // 3600 + 8, tf.int32) % tf.constant(24)
    minite = tf.cast((today_ts % 3600) // 60, tf.int32)
    second = tf.cast(tf.floor(today_ts % 60), tf.int32)

    def timeformat(m):
        if tf.strings.length(tf.strings.format("{}", m)) == 1:
            return (tf.strings.format("0{}", m))
        else:
            return (tf.strings.format("{}", m))

    timestring = tf.strings.join([timeformat(hour), timeformat(minite),
                                timeformat(second)], separator=":")
    tf.print("==========" * 8 + timestring)
MAX_LEN = 300
BATCH_SIZE = 32
(x_train, y_train), (x_test, y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=MAX_LEN)

MAX_WORDS = x_train.max() + 1
CAT_NUM = y_train.max() + 1

ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)) \
          .shuffle(buffer_size=1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()

ds_test = tf.data.Dataset.from_tensor_slices((x_test, y_test)) \
          .shuffle(buffer_size=1000).batch(BATCH_SIZE) \
          .prefetch(tf.data.experimental.AUTOTUNE).cache()

1. Встроенный метод fit

Этот метод обладает мощными функциями и поддерживает обучение на данных numpy array, tf.data.Dataset и Python generator. Кроме того, можно реализовать сложную логику управления процессом обучения с помощью настройки функций обратного вызова.

tf.keras.backend.clear_session()
def create_model():
    
    model = models.Sequential()
    model.add(layers.Embedding(MAX_WORDS, 7, input_length=MAX_LEN))
    model.add(layers.Conv1D(filters=64, kernel_size=5, activation="relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters=32, kernel_size=3, activation="relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Flatten())
    model.add(layers.Dense(CAT_NUM, activation="softmax"))
    return(model)

def compile_model(model):
    model.compile(optimizer=optimizers.Nadam(),
                loss=losses.SparseCategoricalCrossentropy(),
                metrics=[metrics.SparseCategoricalAccuracy(), metrics.SparseTopKCategoricalAccuracy(5)])
    return(model)
 
model = create_model()
model.summary()
model = compile_model(model)
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, 300, 7)            216874    
_________________________________________________________________
conv1d (Conv1D)              (None, 296, 64)           2304      
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 148, 64)           0         
_________________________________________________________________
conv1d_1 (Conv1D)            (None, 146, 32)           6176      
_________________________________________________________________
max_pooling1d_1 (MaxPooling (None, 73, 32)            0         
_________________________________________________________________
flatten (Flatten)            (None, 2336)              0         
_________________________________________________________________
dense (Dense)                (None, 46)                107502    
=================================================================
Total params: 332,856
Trainable params: 332,856
Non-trainable params: 0
_________________________________________________________________
history = model.fit(ds_train, validation_data=ds_test, epochs=10)

``` 1.7346 - val_sparse_categorical_accuracy: 0.5534 - val_sparse_top_k_categorical_accuracy: 0.7560
Epoch 2/10
281/281 [==============================] - 9s 31ms/step - потеря: 1.5079 - sparse_categorical_accuracy: 0.6091 - sparse_top_k_categorical_accuracy: 0.7901 - val_loss: 1.5475 - val_sparse_categorical_accuracy: 0.6109 - val_sparse_top_k_categorical_accuracy: 0.7792

Epoch 3/10
281/281 [==============================] - 9s 33ms/step - потеря: 1.2204 - sparse_categorical_accuracy: 0.6823 - sparse_top_k_categorical_accuracy: 0.8448 - val_loss: 1.5455 - val_sparse_categorical_accuracy: 0.6367 - val_sparse_top_k_categorical_accuracy: 0.8001

Epoch 4/10
281/281 [==============================] - 9s 33ms/step - потеря: 0.9382 - sparse_categorical_accuracy: 0.7543 - sparse_top_k_categorical_accuracy: 0.9075 - val_loss: 1.6780 - val_sparse_categorical_accuracy: 0.6398 - val_sparse_top_k_categorical_accuracy: 0.8032

Epoch 5/10
281/281 [==============================] - 10s 34ms/step - потеря: 0.6791 - sparse_categorical_accuracy: 0.8255 - sparse_top_k_categorical_accuracy: 0.9513 - val_loss: 1.9426 - val_sparse_categorical_accuracy: 0.6376 - val_sparse_top_k_categorical_accuracy: 0.7956

Epoch 6/10
281/281 [==============================] - 9s 33ms/step - потеря: 0.5063 - sparse_categorical_accuracy: 0.8762 - sparse_top_k_categorical_accuracy: 0.9716 - val_loss: 2.2141 - val_sparse_categorical_accuracy: 0.6291 - val_sparse_top_k_categorical_accuracy: 0.7947

Epoch 7/10
281/281 [==============================] - 10s 37ms/step - потеря: 0.4031 - sparse_categorical_accuracy: 0.9050 - sparse_top_k_categorical_accuracy: 0.9817 - val_loss: 2.4126 - val_sparse_categorical_accuracy: 0.6264 - val_sparse_top_k_categorical_accuracy: 0.7947

Epoch 8/10
281/281 [==============================] - 10s 35ms/step - потеря: 0.3380 - sparse_categorical_accuracy: 0.9205 - sparse_top_k_categorical_accuracy: 0.9881 - val_loss: 2.5366 - val_sparse_categorical_accuracy: 0.6242 - val_sparse_top_k_categorical_accuracy: 0.7974

Epoch 9/10
281/281 [==============================] - 10s 36ms/step - потеря: 0.2921 - sparse_categorical_accuracy: 0.9299 - sparse_top_k_categorical_accuracy: 0.9909 - val_loss: 2.6564 - val_sparse_categorical_accuracy: 0.6242 - val_sparse_top_k_categorical_accuracy: 0.7983

Epoch 10/10
281/281 [==============================] - 9s 30ms/step - потеря: 0.2613 - sparse_categorical_accuracy: 0.9334 - sparse_top_k_categorical_accuracy: 0.9947 - val_loss: 2.7365 - val_sparse_categorical_accuracy: 0.6220 - val_sparse_top_k_categorical_accuracy: 0.8005

### 二,内置train_on_batch方法
Данный встроенный метод по сравнению с методом fit более гибкий, позволяет напрямую на уровне пакетов более точно контролировать процесс обучения без использования функций обратного вызова.
```python
tf.keras.backend.clear_session()

def create_model():
    model = models.Sequential()

    model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
    model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Flatten())
    model.add(layers.Dense(CAT_NUM,activation = "softmax"))
    return(model)

def compile_model(model):
    model.compile(optimizer=optimizers.Nadam(),
                loss=losses.SparseCategoricalCrossentropy(),
                metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)]) 
    return(model)
 
model = create_model()
model.summary()
model = compile_model(model) ```
================================================================================13:10:26
epoch =  9
train: {'loss': 0.035002146, 'sparse_categorical_accuracy': 1.0, 'sparse_top_k_categorical_accuracy': 1.0}
valid: {'loss': 5.130505, 'sparse_categorical_accuracy': 0.6175423, 'sparse_top_k_categorical_accuracy': 0.794301}

================================================================================13:10:34
epoch =  10
train: {'loss': 0.028303564, 'sparse_categorical_accuracy': 1.0, 'sparse_top_k_categorical_accuracy': 1.0}
valid: {'loss': 5.4559293, 'sparse_categorical_accuracy': 0.6148709, 'sparse_top_k_categorical_accuracy': 0.7947462}

三,自定义训练循环

自定义训练循环无需编译模型,直接利用优化器根据损失函数反向传播迭代参数,拥有最高的灵活性。

tf.keras.backend.clear_session()

def create_model():
    
    model = models.Sequential()

    model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
    model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
    model.add(layers.MaxPool1D(2))
    model.add(layers.Flatten())
    model.add(layers.Dense(CAT_NUM,activation = "softmax"))
    return(model)

model = create_model()
model.summary()
optimizer = optimizers.Nadam()
loss_func = losses.SparseCategoricalCrossentropy()

train_loss = metrics.Mean(name='train_loss')
train_metric = metrics.SparseCategoricalAccuracy(name='train_accuracy')

valid_loss = metrics.Mean(name='valid_loss')
valid_metric = metrics.SparseCategoricalAccuracy(name='valid_accuracy')

@tf.function
def train_step(model, features, labels):
    with tf.GradientTape() as tape:
        predictions = model(features,training = True)
        loss = loss_func(labels, predictions)
    gradients = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))

    train_loss.update_state(loss)
    train_metric.update_state(labels, predictions)
    

@tf.function
def valid_step(model, features, labels):
    predictions = model(features)
    batch_loss = loss_func(labels, predictions)
    valid_loss.update_state(batch_loss)
    valid_metric.update_state(labels, predictions)
    

def train_model(model,ds_train,ds_valid,epochs):
    for epoch in tf.range(1,epochs+1):
        
        for features, labels in ds_train:
            train_step(model,features,labels)

        for features, labels in ds_valid:
            valid_step(model,features,labels)

        logs = 'Epoch={},Loss:{},Accuracy:{},Valid Loss:{},Valid Accuracy:{}'
        
        if epoch%1 ==0:
            printbar()
            tf.print(tf.strings.format(logs,
            (epoch,train_loss.result(),train_metric.result(),valid_loss.result(),valid_metric.result())))
            tf.print("")
            
        train_loss.reset_states()
        valid_loss.reset_states()
        train_metric.reset_states()
        valid_metric.reset_states()

train_model(model,ds_train,ds_test,10)
================================================================================13:12:03
Epoch=1,Loss:2.02051544,Accuracy:0.460253835,Valid Loss:1.75700927,Valid Accuracy:0.536954582

================================================================================13:12:09
Epoch=2,Loss:1.510795,Accuracy:0.610665798,Valid Loss:1.55349839,Valid Accuracy:0.616206586

================================================================================13:12:17
Epoch=3,Loss:1.19221532,Accuracy:0.696170092,Valid Loss:1.52315605,Valid Accuracy:0.651380241

================================================================================13:12:23
Epoch=4,Loss:0.90101546,Accuracy:0.766310394,Valid Loss:1.68327653,Valid Accuracy:0.648263574

================================================================================13:12:30
``` Epoch=5,Потеря:0.655430496,Точность:0.831329346,Действительная потеря:1.90872383,Действительная точность:0.641139805

================================================================================13:12:37
Epoch=6,Потеря:0.492730737,Точность:0.877866864,Действительная потеря:2.09966016,Действительная точность:0.63223511

================================================================================13:12:44
Epoch=7,Потеря:0.391238362,Точность:0.904030263,Действительная потеря:2.27431226,Действительная точность:0.625111282

================================================================================13:12:51
Epoch=8,Потеря:0.327761739,Точность:0.922066331,Действительная потеря:2.42568827,Действительная точность:0.617542326

================================================================================13:12:58
Epoch=9,Потеря:0.285573095,Точность:0.930527747,Действительная потеря:2.55942106,Действительная точность:0.612644672

================================================================================13:13:05
Epoch=10,Потеря:0.255482465,Точность:0.936094403,Действительная потеря:2.67789412,Действительная точность:0.612199485

Если по содержанию этой книги есть необходимость дальнейшего общения с автором, добро пожаловать в комментарии под аккаунтом «Алгоритм и вкусняшки». Автор постарается ответить в зависимости от наличия времени и сил.

Также можно отправить сообщение через внутренний интерфейс чата, написав в ответе ключевое слово: присоединиться для присоединения к группе читателей для обсуждения.

![Алгоритм и вкусняшки QR-код.jpg](./data/Алгоритм и вкусняшки QR-код.jpg)

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/Python_Ai_Road-eat_tensorflow2_in_30_days.git
git@api.gitlife.ru:oschina-mirror/Python_Ai_Road-eat_tensorflow2_in_30_days.git
oschina-mirror
Python_Ai_Road-eat_tensorflow2_in_30_days
Python_Ai_Road-eat_tensorflow2_in_30_days
master