В приведённых ниже примерах используются низкоуровневые API в TensorFlow для реализации модели линейной регрессии и модели бинарной классификации DNN.
Низкоуровневый API включает операции с тензорами, графами и автоматическое дифференцирование.
import tensorflow as tf
# Time Stamp
@tf.function
def printbar():
today_ts = tf.timestamp() % (24 * 60 * 60)
hour = tf.cast(today_ts // 3600 + 8, tf.int32) % tf.constant(24)
minute = tf.cast((today_ts % 3600) // 60, tf.int32)
second = tf.cast(tf.floor(today_ts % 60), tf.int32)
def timeformat(m):
if tf.strings.length(tf.strings.format("{}", m)) == 1:
return (tf.strings.format("0{}", m))
else:
return (tf.strings.format("{}", m))
timestring = tf.strings.join([timeformat(hour), timeformat(minute),
timeformat(second)], separator=":")
tf.print("==========" * 8 + timestring)
(a) Подготовка данных
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
# Количество образцов
n = 400
# Генерация наборов данных
X = tf.random.uniform([n, 2], minval=-10, maxval=10)
w0 = tf.constant([[2.0], [-3.0]])
b0 = tf.constant([[3.0]])
Y = X @ w0 + b0 + tf.random.normal([n, 1], mean=0.0, stddev=2.0) # @ — умножение матриц; добавление гауссовского шума
# Визуализация данных
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.figure(figsize=(12, 5))
ax1 = plt.subplot(121)
ax1.scatter(X[:, 0], Y[:, 0], c="b")
plt.xlabel("x1")
plt.ylabel("y", rotation=0)
ax2 = plt.subplot(122)
ax2.scatter(X[:, 1], Y[:, 0], c="g")
plt.xlabel("x2")
plt.ylabel("y", rotation=0)
plt.show()
# Создание генератора конвейера данных
def data_iter(features, labels, batch_size=8):
num_examples = len(features)
indices = list(range(num_examples))
np.random.shuffle(indices) # Случайный порядок чтения выборок
for i in range(0, num_examples, batch_size):
indexs = indices[i: min(i + batch_size, num_examples)]
yield tf.gather(features, indexs), tf.gather(labels, indexs)
# Тестирование конвейера данных
batch_size = 8
(features, labels) = next(data_iter(X, Y, batch_size))
print(features)
print(labels)
tf.Tensor(
[[ 2.6161194 0.11071014]
[ 9.79207 -0.70180416]
[ 9.792343 6.9149055 ]
[-2.4186516 -9.375019 ]
[ 9.83749 -3.4637213 ]
[ 7.3953056 4.374569 ]
[-0.14686584 -0.28063297]
[ 0.49001217 -9.739792 ]], shape=(8, 2), dtype=float32)
tf.Tensor(
[[ 9.334667 ]
[22.058844 ]
[ 3.0695205]
[26.736238 ]
[35.292133 ]
[ 4.2943544]
[ 1.6713585]
[34.826904 ]], shape=(8, 1), dtype=float32)
(b) Определение модели
w = tf.Variable(tf.random.normal(w0.shape))
b = tf.Variable(tf.zeros_like(b0, dtype=tf.float32))
# Определение модели
class LinearRegression:
# Прямое распространение
def __call__(self, x):
return x @ w + b
# Функция потерь
def loss_func(self, y_true, y_pred):
return tf.reduce_mean((y_true - y_pred) ** 2 / 2)
model = LinearRegression()
(c) Обучение модели
# Отладка в динамическом графе
def train_step(model, features, labels):
with tf.GradientTape() as tape:
predictions = model(features)
loss = model.loss_func(labels, predictions)
# Обратное распространение для вычисления градиентов
dloss_dw, dloss_db = tape.gradient(loss, [w, b])
# Обновление параметров с использованием метода градиентного спуска
w.assign(w - 0.001 * dloss_dw)
b.assign(b - 0.001 * dloss_db)
return loss
# Проверка результатов train_step
batch_size = 10
(features, labels) = next(data_iter(X, Y, batch_size))
train_step(model, features, labels)
<tf.Tensor: shape=(), dtype=float32, numpy=211.09982>
def train_model(model, epochs):
for epoch in tf.range(1, epochs + 1):
for features, labels in data_iter(X, Y, 10):
loss = train_step(model, features, labels)
if epoch % 50 == 0:
printbar()
``` ```
tf.print("epoch =",epoch,"loss = ",loss)
tf.print("w =",w)
tf.print("b =",b)
train_model(model,epochs = 200)
================================================================================16:35:56
epoch = 50 loss = 1.78806472
w = [[1.97554708]
[-2.97719598]]
b = [[2.60692883]]
================================================================================16:36:00
epoch = 100 loss = 2.64588404
w = [[1.97319281]
[-2.97810626]]
b = [[2.95525956]]
================================================================================16:36:04
epoch = 150 loss = 1.42576694
w = [[1.96466208]
[-2.98337793]]
b = [[3.00264144]]
================================================================================16:36:08
epoch = 200 loss = 1.68992615
w = [[1.97718477]
[-2.983814]]
b = [[3.01013041]]
## Ускорение с помощью Autograph для преобразования динамического графа в статический
@tf.function
def train_step(model, features, labels):
with tf.GradientTape() as tape:
predictions = model(features)
loss = model.loss_func(labels, predictions)
# Обратное распространение для вычисления градиентов
dloss_dw,dloss_db = tape.gradient(loss,[w,b])
# Обновление параметров с использованием метода спуска по градиенту
w.assign(w - 0.001*dloss_dw)
b.assign(b - 0.001*dloss_db)
return loss
def train_model(model,epochs):
for epoch in tf.range(1,epochs+1):
for features, labels in data_iter(X,Y,10):
loss = train_step(model,features,labels)
if epoch%50==0:
printbar()
tf.print("epoch =",epoch,"loss = ",loss)
tf.print("w =",w)
tf.print("b =",b)
train_model(model,epochs = 200)
================================================================================16:36:35
epoch = 50 loss = 0.894210339
w = [[1.96927285]
[-2.98914337]]
b = [[3.00987792]]
================================================================================16:36:36
epoch = 100 loss = 1.58621466
w = [[1.97566223]
[-2.98550248]]
b = [[3.00998402]]
================================================================================16:36:37
epoch = 150 loss = 2.2695992
w = [[1.96664226]
[-2.99248481]]
b = [[3.01028705]]
================================================================================16:36:38
epoch = 200 loss = 1.90848124
w = [[1.98000824]
[-2.98888135]]
b = [[3.01085401]]
# Визуализация результатов
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.figure(figsize = (12,5))
ax1 = plt.subplot(121)
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")
ax1.plot(X[:,0],w[0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")
ax1.legend()
plt.xlabel("x1")
plt.ylabel("y",rotation = 0)
ax2 = plt.subplot(122)
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")
ax2.plot(X[:,1],w[1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")
ax2.legend()
plt.xlabel("x2")
plt.ylabel("y",rotation = 0)
plt.show()
### 2. Модель бинарной классификации DNN
(a) Подготовка данных
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import tensorflow as tf
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
# Количество положительных/отрицательных образцов
n_positive,n_negative = 2000,2000
# Генерация положительных образцов с распределением на меньшем кольце
r_p = 5.0 + tf.random.truncated_normal([n_positive,1],0.0,1.0)
theta_p = tf.random.uniform([n_positive,1],0.0,2*np.pi)
Xp = tf.concat([r_p*tf.cos(theta_p),r_p*tf.sin(theta_p)],axis = 1)
Yp = tf.ones_like(r_p)
# Генерация отрицательных образцов с распределением на большем кольце
r_n = 8.0 + tf.random.truncated_normal([n_negative,1],0.0,1.0)
theta_n = tf.random.uniform([n_negative,1],0.0,2*np.pi)
Xn = tf.concat([r_n*tf.cos(theta_n),r_n*tf.sin(theta_n)],axis = 1)
Yn = tf.zeros_like(r_n)
# Сборка всех образцов
X = tf.concat([Xp,Xn],axis = 0)
Y = tf.concat([Yp,Yn],axis = 0)
# Визуализация данных
``` ```
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0].numpy(),Xp[:,1].numpy(),c = "r")
plt.scatter(Xn[:,0].numpy(),Xn[:,1].numpy(),c = "g")
plt.legend(["positive","negative"]);

# Создаем генератор конвейера данных
def data_iter(features, labels, batch_size=8):
num_examples = len(features)
indices = list(range(num_examples))
np.random.shuffle(indices) # Случайный порядок чтения выборок
for i in range(0, num_examples, batch_size):
indexs = indices[i: min(i + batch_size, num_examples)]
yield tf.gather(features,indexs), tf.gather(labels,indexs)
# Тестирование конвейера данных
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
print(features)
print(labels)
tf.Tensor(
[[ 0.03732629 3.5783494 ]
[ 0.542919 5.035079 ]
[ 5.860281 -2.4476354 ]
[ 0.63657564 3.194231 ]
[-3.5072308 2.5578873 ]
[-2.4109735 -3.6621518 ]
[ 4.0975413 -2.4172943 ]
[ 1.9393908 -6.782317 ]
[-4.7453732 -0.5176727 ]
[-1.4057113 -7.9775257 ]], shape=(10, 2), dtype=float32)
tf.Tensor(
[[1.]
[1.]
[0.]
[1.]
[1.]
[1.]
[1.]
[0.]
[1.]
[0.]], shape=(10, 1), dtype=float32)
(b) Определение модели
Здесь tf.Module
используется для организации параметров в модели. Более подробную информацию о tf.Module
вы можете найти в последнем разделе главы 4 (AutoGraph и tf.Module
).
class DNNModel(tf.Module):
def __init__(self,name = None):
super(DNNModel, self).__init__(name=name)
self.w1 = tf.Variable(tf.random.truncated_normal([2,4]),dtype = tf.float32)
self.b1 = tf.Variable(tf.zeros([1,4]),dtype = tf.float32)
self.w2 = tf.Variable(tf.random.truncated_normal([4,8]),dtype = tf.float32)
self.b2 = tf.Variable(tf.zeros([1,8]),dtype = tf.float32)
self.w3 = tf.Variable(tf.random.truncated_normal([8,1]),dtype = tf.float32)
self.b3 = tf.Variable(tf.zeros([1,1]),dtype = tf.float32)
# Прямое распространение
@tf.function(input_signature=[tf.TensorSpec(shape = [None,2], dtype = tf.float32)])
def __call__(self,x):
x = tf.nn.relu(x@self.w1 + self.b1)
x = tf.nn.relu(x@self.w2 + self.b2)
y = tf.nn.sigmoid(x@self.w3 + self.b3)
return y
# Функция потерь (бинарная перекрёстная энтропия)
@tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
def loss_func(self,y_true,y_pred):
# Ограничение предсказания между 1e-7 и 1 - 1e-7, чтобы избежать ошибки при log(0)
eps = 1e-7
y_pred = tf.clip_by_value(y_pred,eps,1.0-eps)
bce = - y_true*tf.math.log(y_pred) - (1-y_true)*tf.math.log(1-y_pred)
return tf.reduce_mean(bce)
# Метрика (Точность)
@tf.function(input_signature=[tf.TensorSpec(shape = [None,1], dtype = tf.float32),
tf.TensorSpec(shape = [None,1], dtype = tf.float32)])
def metric_func(self,y_true,y_pred):
y_pred = tf.where(y_pred>0.5,tf.ones_like(y_pred,dtype = tf.float32),
tf.zeros_like(y_pred,dtype = tf.float32))
acc = tf.reduce_mean(1-tf.abs(y_true-y_pred))
return acc
model = DNNModel()
# Проверка структуры модели
batch_size = 10
(features,labels) = next(data_iter(X,Y,batch_size))
predictions = model(features)
loss = model.loss_func(labels,predictions)
metric = model.metric_func(labels,predictions)
tf.print("начальная потеря:",loss)
tf.print("начальная метрика",metric)
начальная потеря: 1.76568353
начальная метрика 0.6
print(len(model.trainable_variables))
6
(c) Обучение модели
## Преобразование в статический граф для ускорения с помощью Autograph
@tf.function
def train_step(model, features, labels):
# Прямое распространение для расчёта потерь
with tf.GradientTape() as tape:
predictions = model(features)
loss = model.loss_func(labels,
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )