Слияние кода завершено, страница обновится автоматически
'''
A Convolutional Network implementation example using TensorFlow library.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
from __future__ import print_function
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from PIL import Image
import numpy
import tensorflow as tf
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
# Parameters
learning_rate = 0.001
training_iters = 3000
batch_size = 10
display_step = 3
# Network Parameters
n_input = 128*128 # MNIST data input (img shape: 128*128 )
n_classes = 10 # MNIST total classes (0-9 digits)
dropout = 0.75 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, 128, 128, 3])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 128, 128, 3])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
print(conv1.shape)
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
print(conv1.shape)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
print(conv2.shape)
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
print(conv2.shape)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 3 input, 24 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 3, 24])),
# 5x5 conv, 24 inputs, 96 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 24, 96])),
# fully connected, 32*32*96 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([32*32*96, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([24])),
'bc2': tf.Variable(tf.random_normal([96])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
saver=tf.train.Saver()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
list = os.listdir("./resize_image/")
print(list)
print(len(list))
count=0
while count<10:
count = count+1
print("count:",count)
for batch_id in range(0, 12):
batch = list[batch_id * 10:batch_id * 10 + 10]
batch_xs = []
batch_ys = []
for image in batch:
id_tag = image.find("-")
score = image[0:id_tag]
# print(score)
img = Image.open("./resize_image/" + image)
img_ndarray = numpy.asarray(img, dtype='float32')
img_ndarray = numpy.reshape(img_ndarray, [128, 128, 3])
# print(img_ndarray.shape)
batch_x = img_ndarray
batch_xs.append(batch_x)
# print(batch_xs)
batch_y = numpy.asarray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
# print(type(score))
batch_y[int(score) - 1] = 1
# print(batch_y)
batch_y = numpy.reshape(batch_y, [10, ])
batch_ys.append(batch_y)
# print(batch_ys)
batch_xs = numpy.asarray(batch_xs)
print(batch_xs.shape)
batch_ys = numpy.asarray(batch_ys)
print(batch_ys.shape)
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
keep_prob: dropout})
if step % display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_xs,
y: batch_ys,
keep_prob: 1.})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
saver.save(sess,"./model/model.ckpt")
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )