1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/mindspore-mindarmour

GitLife Service Account

Примечания к выпуску MindArmour 1.5.0

Основные возможности и улучшения

Надежность

[БЕТА] Восстановление метрик AI Fuzz и покрытия нейронов

Исправленные ошибки

Контрибьюторы

Спасибо за ваш вклад этим замечательным людям:

Wu Xiaoyu, Liu Zhidan, Jin Xiulang, Liu Luobin, Liu Liu

Последнее сообщение коммита: !268 Update Release Note
01.12.2024 21:47
GitLife Service Account

MindArmour Release Notes

MindArmour 1.9.0 Release Notes

API Change

  • Add Chinese version api of natural robustness feature.

Contributors

Thanks goes to these wonderful people:

Liu Zhidan, Zhang Shukun, Jin Xiulang, Liu Liu, Tang Cong, Yangyuan.

Contributions of any kind are welcome!

Последнее сообщение коммита: !408 add releasenote of 1.9.0 version
01.12.2024 21:47
GitLife Service Account

MindArmour 1.1.0 Release Notes

MindArmour

Major Features and Improvements

  • [STABLE] Attack capability of the Object Detection models.
    • Some white-box adversarial attacks, such as [iterative] gradient method and DeepFool now can be applied to Object Detection models.
    • Some black-box adversarial attacks, such as PSO and Genetic Attack now can be applied to Object Detection models.

Backwards Incompatible Change

Python API

C++ API

Deprecations

Python API

C++ API

New Features

Python API

C++ API

Improvements

Python API

C++ API

Bug fixes

Python API

C++ API

Contributors

Thanks goes to these wonderful people:

Xiulang Jin, Zhidan Liu, Luobin Liu and Liu Liu.

Contributions of any kind are welcome!

Последнее сообщение коммита: !158 Update release.md to v1.1.0
01.12.2024 21:47
GitLife Service Account

Release 0.6.0-beta

Major Features and Improvements

Differential privacy model training

  • Optimizers with differential privacy

    • Differential privacy model training now supports some new policies.

    • Adaptive Norm policy is supported.

    • Adaptive Noise policy with exponential decrease is supported.

  • Differential Privacy Training Monitor

    • A new monitor is supported using zCDP as its asymptotic budget estimator.

Bugfixes

Contributors

Thanks goes to these wonderful people:

Liu Liu, Huanhuan Zheng, XiuLang jin, Zhidan liu.

Contributions of any kind are welcome.

Последнее сообщение коммита: !67 Add v0.6.0-beta release note
01.12.2024 21:47
GitLife Service Account

Release 1.0.0

Major Features and Improvements

Differential privacy model training

  • Privacy leakage evaluation.

    • Parameter verification enhancement.
    • Support parallel computing.

Model robustness evaluation

  • Fuzzing based Adversarial Robustness testing.

    • Parameter verification enhancement.

Other

  • Api & Directory Structure
    • Adjusted the directory structure based on different features.
    • Optimize the structure of examples.

Bugfixes

Contributors

Thanks goes to these wonderful people:

Liu Liu, Xiulang Jin, Zhidan Liu and Luobin Liu.

Contributions of any kind are welcome!

Последнее сообщение коммита: !123 Version update to 1.0.0
01.12.2024 21:46
GitLife Service Account

Major Features and Improvements

  • Add a white-box attack method: M-DI2-FGSM(PR14).
  • Add three neuron coverage metrics: KMNCov, NBCov, SNACov(PR12).
  • Add a coverage-guided fuzzing test framework for deep neural networks(PR13).
  • Update the MNIST Lenet5 examples.
  • Remove some duplicate code.

Bug fixes

Contributors

Thanks goes to these wonderful people:
Liu Liu, Huanhuan Zheng, Zhidan Liu, Xiulang Jin
Contributions of any kind are welcome!

Последнее сообщение коммита: !15 update package.sh configuration
01.12.2024 21:46
GitLife Service Account

Release 0.3.0-alpha

Major Features and Improvements

Differential Privacy Model Training

Differential Privacy is coming! By using Differential-Privacy-Optimizers, one can still train a model as usual, while the trained model preserved the privacy of training dataset, satisfying the definition of
differential privacy with proper budget.

  • Optimizers with Differential Privacy(PR23, PR24)
    • Some common optimizers now have a differential privacy version (SGD/
      Adam). We are adding more.
    • Automatically and adaptively add Gaussian Noise during training to achieve Differential Privacy.
    • Automatically stop training when Differential Privacy Budget exceeds.
  • Differential Privacy Monitor(PR22)
    • Calculate overall budget consumed during training, indicating the ultimate protect effect.

Bug fixes

Contributors

Thanks goes to these wonderful people:
Liu Liu, Huanhuan Zheng, Zhidan Liu, Xiulang Jin
Contributions of any kind are welcome!

Последнее сообщение коммита: !25 update release note and lenet5_dp_model_train.py
1
https://api.gitlife.ru/oschina-mirror/mindspore-mindarmour.git
git@api.gitlife.ru:oschina-mirror/mindspore-mindarmour.git
oschina-mirror
mindspore-mindarmour
mindspore-mindarmour