MSC: A Dataset for Macro-Management in StarCraft II
MSC: A Dataset for Macro-Management in StarCraft II.
@article{wu2017msc,
title={MSC: A Dataset for Macro-Management in StarCraft II},
author={Wu, Huikai and Zhang, Junge and Huang, Kaiqi},
journal={arXiv preprint arXiv:1710.03131},
year={2017}
}
Method | TvT:T | TvZ:T | TvZ:Z | TvP:T | TvP:P | ZvZ:Z | ZvP:Z | ZvP:P | PvP:P |
---|---|---|---|---|---|---|---|---|---|
Baseline[Global] | 61.09 | 58.89 | 60.61 | 57.21 | 60.95 | 59.91 | 59.95 | 59.35 | 51.36 |
Baseline[Spatial] | 50.85 | 52.35 | 59.82 | 54.90 | 59.15 | 54.65 | 55.02 | 58.78 | 57.76 |
Method | TvT:T | TvZ:T | TvZ:Z | TvP:T | TvP:P | ZvZ:Z | ZvP:Z | ZvP:P | PvP:P |
---|---|---|---|---|---|---|---|---|---|
Baseline[Global] | 74.12 | 73.01 | 73.89 | 70.29 | 79.28 | 76.07 | 72.02 | 78.08 | 76.28 |
Baseline[Spatial] | 73.07 | 73.71 | 75.92 | 64.15 | 75.09 | 74.88 | 72.32 | 76.12 | 74.22 |
Each replay is a (T, M) matrix F, where F[t, :] is the feature vector for time step t.
Each row of F is a M-dimensional vector, with M varying as [RACE] v.s. [RACE].
The M-dimensional vector is orgnized as follows:
[15]: frame id.
[16-27): player info, including various resources and n_power_source.
[27-#1): alerts, boolean.
[#1-#2): upgrades, boolean.
[#2-#3): research count.
[#3-#4): friendly units info, which is defined in Here.
[#4-M): enemy units info, where M = #4 + #[ENEMY RACE].
V.S. | TvT:T | TvZ:T | TvZ:Z | TvP:T | TvP:P | ZvZ:Z | ZvP:Z | ZvP:P | PvP:P |
---|---|---|---|---|---|---|---|---|---|
M | 753 | 1131 | 1121 | 663 | 653 | 1499 | 1031 | 1031 | 563 |
RACE | #1 | #2 | #3 | #4 | #ACTION | #RACE |
---|---|---|---|---|---|---|
Terran | 29 | 60 | 81 | 417 | 75 | 336 |
Protoss | 29 | 55 | 71 | 317 | 61 | 246 |
Zerg | 29 | 55 | 71 | 785 | 74 | 714 |
Code for loading F:
import numpy as np
from scipy import sparse
F = np.asarray(sparse.load_npz(PATH).todense())
Each replay contains a (T, 13, 64, 64) tensor S and a (T, 26) matrix G.
The specifics for S[t, :, :, :] is as follows:
Код для загрузки S:
import numpy as np
from scipy import sparse
S = np.asarray(sparse.load_npz(PATH).todense()).reshape([-1, 13, 64, 64])
Специфика G[t, :] следующая:
Код для загрузки G:
import numpy as np
from scipy import sparse
G = np.asarray(sparse.load_npz(PATH).todense())
После шага 1 и шага 2 структура папок будет следующей:
$STAR_CRAFT$
├── Battle.net
├── Libs
├── Maps
├── Replays
├── SC2Data
└── Versions
future == 0.16.0
numpy == 1.13.0
scipy == 0.19.0
python_gflags == 3.1.1
tqdm == 4.14.0
protobuf == 3.4.0
pystream_protobuf == 1.4.4
PySC2 == 1.0
s2clientprotocol == 1.1
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Комментарии ( 0 )