Слияние кода завершено, страница обновится автоматически
import argparse
import json
import os
import shutil
import subprocess
import numpy as np
import torch
import torchaudio
from scipy.io import loadmat
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
from configs.default import get_cfg_defaults
from core.networks.diffusion_net import DiffusionNet
from core.networks.diffusion_util import NoisePredictor, VarianceSchedule
from core.utils import (
crop_src_image,
get_pose_params,
get_video_style_clip,
get_wav2vec_audio_window,
)
from generators.utils import get_netG, render_video
@torch.no_grad()
def get_diff_net(cfg, device):
diff_net = DiffusionNet(
cfg=cfg,
net=NoisePredictor(cfg),
var_sched=VarianceSchedule(
num_steps=cfg.DIFFUSION.SCHEDULE.NUM_STEPS,
beta_1=cfg.DIFFUSION.SCHEDULE.BETA_1,
beta_T=cfg.DIFFUSION.SCHEDULE.BETA_T,
mode=cfg.DIFFUSION.SCHEDULE.MODE,
),
)
checkpoint = torch.load(cfg.INFERENCE.CHECKPOINT, map_location=device)
model_state_dict = checkpoint["model_state_dict"]
diff_net_dict = {
k[9:]: v for k, v in model_state_dict.items() if k[:9] == "diff_net."
}
diff_net.load_state_dict(diff_net_dict, strict=True)
diff_net.eval()
return diff_net
@torch.no_grad()
def get_audio_feat(wav_path, output_name, wav2vec_model):
audio_feat_dir = os.path.dirname(audio_feat_path)
pass
@torch.no_grad()
def inference_one_video(
cfg,
audio_path,
style_clip_path,
pose_path,
output_path,
diff_net,
device,
max_audio_len=None,
sample_method="ddim",
ddim_num_step=10,
):
audio_raw = audio_data = np.load(audio_path)
if max_audio_len is not None:
audio_raw = audio_raw[: max_audio_len * 50]
gen_num_frames = len(audio_raw) // 2
audio_win_array = get_wav2vec_audio_window(
audio_raw,
start_idx=0,
num_frames=gen_num_frames,
win_size=cfg.WIN_SIZE,
)
audio_win = torch.tensor(audio_win_array).to(device)
audio = audio_win.unsqueeze(0)
# the second parameter is "" because of bad interface design...
style_clip_raw, style_pad_mask_raw = get_video_style_clip(
style_clip_path, "", style_max_len=256, start_idx=0
)
style_clip = style_clip_raw.unsqueeze(0).to(device)
style_pad_mask = (
style_pad_mask_raw.unsqueeze(0).to(device)
if style_pad_mask_raw is not None
else None
)
gen_exp_stack = diff_net.sample(
audio,
style_clip,
style_pad_mask,
output_dim=cfg.DATASET.FACE3D_DIM,
use_cf_guidance=cfg.CF_GUIDANCE.INFERENCE,
cfg_scale=cfg.CF_GUIDANCE.SCALE,
sample_method=sample_method,
ddim_num_step=ddim_num_step,
)
gen_exp = gen_exp_stack[0].cpu().numpy()
pose_ext = pose_path[-3:]
pose = None
pose = get_pose_params(pose_path)
# (L, 9)
selected_pose = None
if len(pose) >= len(gen_exp):
selected_pose = pose[: len(gen_exp)]
else:
selected_pose = pose[-1].unsqueeze(0).repeat(len(gen_exp), 1)
selected_pose[: len(pose)] = pose
gen_exp_pose = np.concatenate((gen_exp, selected_pose), axis=1)
np.save(output_path, gen_exp_pose)
return output_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="inference for demo")
parser.add_argument("--wav_path", type=str, default="", help="path for wav")
parser.add_argument("--image_path", type=str, default="", help="path for image")
parser.add_argument("--disable_img_crop", dest="img_crop", action="store_false")
parser.set_defaults(img_crop=True)
parser.add_argument(
"--style_clip_path", type=str, default="", help="path for style_clip_mat"
)
parser.add_argument("--pose_path", type=str, default="", help="path for pose")
parser.add_argument(
"--max_gen_len",
type=int,
default=1000,
help="The maximum length (seconds) limitation for generating videos",
)
parser.add_argument(
"--cfg_scale",
type=float,
default=1.0,
help="The scale of classifier-free guidance",
)
parser.add_argument(
"--output_name",
type=str,
default="test",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
)
args = parser.parse_args()
if args.device == "cuda" and not torch.cuda.is_available():
print("CUDA is not available, set --device=cpu to use CPU.")
exit(1)
device = torch.device(args.device)
cfg = get_cfg_defaults()
cfg.CF_GUIDANCE.SCALE = args.cfg_scale
cfg.freeze()
tmp_dir = f"tmp/{args.output_name}"
os.makedirs(tmp_dir, exist_ok=True)
# get audio in 16000Hz
wav_16k_path = os.path.join(tmp_dir, f"{args.output_name}_16K.wav")
command = f"ffmpeg -y -i {args.wav_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {wav_16k_path}"
subprocess.run(command.split())
# get wav2vec feat from audio
wav2vec_processor = Wav2Vec2Processor.from_pretrained(
"jonatasgrosman/wav2vec2-large-xlsr-53-english"
)
wav2vec_model = (
Wav2Vec2Model.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english")
.eval()
.to(device)
)
speech_array, sampling_rate = torchaudio.load(wav_16k_path)
audio_data = speech_array.squeeze().numpy()
inputs = wav2vec_processor(
audio_data, sampling_rate=16_000, return_tensors="pt", padding=True
)
with torch.no_grad():
audio_embedding = wav2vec_model(
inputs.input_values.to(device), return_dict=False
)[0]
audio_feat_path = os.path.join(tmp_dir, f"{args.output_name}_wav2vec.npy")
np.save(audio_feat_path, audio_embedding[0].cpu().numpy())
# get src image
src_img_path = os.path.join(tmp_dir, "src_img.png")
if args.img_crop:
crop_src_image(args.image_path, src_img_path, 0.4)
else:
shutil.copy(args.image_path, src_img_path)
with torch.no_grad():
# get diff model and load checkpoint
diff_net = get_diff_net(cfg, device).to(device)
# generate face motion
face_motion_path = os.path.join(tmp_dir, f"{args.output_name}_facemotion.npy")
inference_one_video(
cfg,
audio_feat_path,
args.style_clip_path,
args.pose_path,
face_motion_path,
diff_net,
device,
max_audio_len=args.max_gen_len,
)
# get renderer
renderer = get_netG("checkpoints/renderer.pt", device)
# render video
output_video_path = f"output_video/{args.output_name}.mp4"
render_video(
renderer,
src_img_path,
face_motion_path,
wav_16k_path,
output_video_path,
device,
fps=25,
no_move=False,
)
# add watermark
# if you want to generate videos with no watermark (for evaluation), remove this code block.
no_watermark_video_path = f"{output_video_path}-no_watermark.mp4"
shutil.move(output_video_path, no_watermark_video_path)
os.system(
f'ffmpeg -y -i {no_watermark_video_path} -vf "movie=media/watermark.png,scale= 120: 36[watermask]; [in] [watermask] overlay=140:220 [out]" {output_video_path}'
)
os.remove(no_watermark_video_path)
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )