v0.24.1(31/10/2022)
New Features
- Support mmcls with NPU backend. ([#1072](https://github.com/open-mmlab/mmclassification/pull/1072))
Bug Fixes
- Fix performance issue in convnext DDP train. ([#1098](https://github.com/open-mmlab/mmclassification/pull/1098))
v0.25.0(06/12/2022)
Highlights
- Support MLU backend.
New Features
- Support MLU backend. ([#1159](https://github.com/open-mmlab/mmclassification/pull/1159))
- Support Activation Checkpointing for ConvNeXt. ([#1152](https://github.com/open-mmlab/mmclassification/pull/1152))
Improvements
- Add `dist_train_arm.sh` for ARM device and update NPU results. ([#1218](https://github.com/open-mmlab/mmclassification/pull/1218))
Bug Fixes
- Fix a bug caused `MMClsWandbHook` stuck. ([#1242](https://github.com/open-mmlab/mmclassification/pull/1242))
- Fix the redundant `device_ids` in `tools/test.py`. ([#1215](https://github.com/open-mmlab/mmclassification/pull/1215))
Docs Update
- Add version banner and version warning in master docs. ([#1216](https://github.com/open-mmlab/mmclassification/pull/1216))
- Update NPU support doc. ([#1198](https://github.com/open-mmlab/mmclassification/pull/1198))
- Fixed typo in `pytorch2torchscript.md`. ([#1173](https://github.com/open-mmlab/mmclassification/pull/1173))
- Fix typo in `miscellaneous.md`. ([#1137](https://github.com/open-mmlab/mmclassification/pull/1137))
- further detail for the doc for `ClassBalancedDataset`. ([#901](https://github.com/open-mmlab/mmclassification/pull/901))
v0.22.1(15/4/2022)
New Features
- [Feature] Support resize relative position embedding in `SwinTransformer`. ([#749](https://github.com/open-mmlab/mmclassification/pull/749))
- [Feature] Add PoolFormer backbone and checkpoints. ([#746](https://github.com/open-mmlab/mmclassification/pull/746))
Improvements
- [Enhance] Improve CPE performance by reduce memory copy. ([#762](https://github.com/open-mmlab/mmclassification/pull/762))
- [Enhance] Add extra dataloader settings in configs. ([#752](https://github.com/open-mmlab/mmclassification/pull/752))
v0.23.0(1/5/2022)
New Features
- Support DenseNet. ([#750](https://github.com/open-mmlab/mmclassification/pull/750))
- Support VAN. ([#739](https://github.com/open-mmlab/mmclassification/pull/739))
Improvements
- Support training on IPU and add fine-tuning configs of ViT. ([#723](https://github.com/open-mmlab/mmclassification/pull/723))
Docs Update
- New style API reference, and easier to use! Welcome [view it](https://mmclassification.readthedocs.io/en/master/api/models.html). ([#774](https://github.com/open-mmlab/mmclassification/pull/774))
v0.23.1(2/6/2022)
New Features
- [Feature] Dedicated MMClsWandbHook for MMClassification (Weights and Biases Integration) ([#764](https://github.com/open-mmlab/mmclassification/pull/764))
Improvements
- [Refactor] Use mdformat instead of markdownlint to format markdown. ([#844](https://github.com/open-mmlab/mmclassification/pull/844))
Bug Fixes
- [Fix] Fix wrong `--local_rank`.
Docs Update
- [Docs] Update install tutorials. ([#854](https://github.com/open-mmlab/mmclassification/pull/854))
- [Docs] Fix wrong link in README. ([#835](https://github.com/open-mmlab/mmclassification/pull/835))
v0.23.2(28/7/2022)
New Features
- Support MPS device. ([#894](https://github.com/open-mmlab/mmclassification/pull/894))
Bug Fixes
- Fix a bug in Albu which caused crashing. ([#918](https://github.com/open-mmlab/mmclassification/pull/918))
v0.24.0(30/9/2022)
Highlights
- Support HorNet, EfficientFormerm, SwinTransformer V2 and MViT backbones.
- Support Standford Cars dataset.
New Features
- Support HorNet Backbone. ([#1013](https://github.com/open-mmlab/mmclassification/pull/1013))
- Support EfficientFormer. ([#954](https://github.com/open-mmlab/mmclassification/pull/954))
- Support Stanford Cars dataset. ([#893](https://github.com/open-mmlab/mmclassification/pull/893))
- Support CSRA head. ([#881](https://github.com/open-mmlab/mmclassification/pull/881))
- Support Swin Transform V2. ([#799](https://github.com/open-mmlab/mmclassification/pull/799))
- Support MViT and add checkpoints. ([#924](https://github.com/open-mmlab/mmclassification/pull/924))
Improvements
- \[Improve\] replace loop of progressbar in api/test. ([#878](https://github.com/open-mmlab/mmclassification/pull/878))
- \[Enhance\] RepVGG for YOLOX-PAI. ([#1025](https://github.com/open-mmlab/mmclassification/pull/1025))
- \[Enhancement\] Update VAN. ([#1017](https://github.com/open-mmlab/mmclassification/pull/1017))
- \[Refactor\] Re-write `get_sinusoid_encoding` from third-party implementation. ([#965](https://github.com/open-mmlab/mmclassification/pull/965))
- \[Improve\] Upgrade onnxsim to v0.4.0. ([#915](https://github.com/open-mmlab/mmclassification/pull/915))
- \[Improve\] Fixed typo in `RepVGG`. ([#985](https://github.com/open-mmlab/mmclassification/pull/985))
- \[Improve\] Using `train_step` instead of `forward` in PreciseBNHook ([#964](https://github.com/open-mmlab/mmclassification/pull/964))
- \[Improve\] Use `forward_dummy` to calculate FLOPS. ([#953](https://github.com/open-mmlab/mmclassification/pull/953))
Bug Fixes
- Fix warning with `torch.meshgrid`. ([#860](https://github.com/open-mmlab/mmclassification/pull/860))
- Add matplotlib minimum version requriments. ([#909](https://github.com/open-mmlab/mmclassification/pull/909))
- val loader should not drop last by default. ([#857](https://github.com/open-mmlab/mmclassification/pull/857))
- Fix config.device bug in toturial. ([#1059](https://github.com/open-mmlab/mmclassification/pull/1059))
- Fix attenstion clamp max params ([#1034](https://github.com/open-mmlab/mmclassification/pull/1034))
- Fix device mismatch in Swin-v2. ([#976](https://github.com/open-mmlab/mmclassification/pull/976))
- Fix the output position of Swin-Transformer. ([#947](https://github.com/open-mmlab/mmclassification/pull/947))
Docs Update
- Fix typo in config.md. ([#827](https://github.com/open-mmlab/mmclassification/pull/827))
- Add version for torchvision to avoide error. ([#903](https://github.com/open-mmlab/mmclassification/pull/903))
- Fixed typo for `--out-dir` option of analyze_results.py. ([#898](https://github.com/open-mmlab/mmclassification/pull/898))
- Refine the docstring of RegNet ([#935](https://github.com/open-mmlab/mmclassification/pull/935))
v0.19.0(31/12/2021)
Highlights
- The feature extraction function has been enhanced. See [#593](https://github.com/open-mmlab/mmclassification/pull/593) for more details.
- Provide the high-acc ResNet-50 training settings from [*ResNet strikes back*](https://arxiv.org/abs/2110.00476).
- Reproduce the training accuracy of T2T-ViT & RegNetX, and provide self-training checkpoints.
- Support DeiT & Conformer backbone and checkpoints.
- Provide a CAM visualization tool based on [pytorch-grad-cam](https://github.com/jacobgil/pytorch-grad-cam), and detailed [user guide](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#class-activation-map-visualization)!
New Features
- Support Precise BN. ([#401](https://github.com/open-mmlab/mmclassification/pull/401))
- Add CAM visualization tool. ([#577](https://github.com/open-mmlab/mmclassification/pull/577))
- Repeated Aug and Sampler Registry. ([#588](https://github.com/open-mmlab/mmclassification/pull/588))
- Add DeiT backbone and checkpoints. ([#576](https://github.com/open-mmlab/mmclassification/pull/576))
- Support LAMB optimizer. ([#591](https://github.com/open-mmlab/mmclassification/pull/591))
- Implement the conformer backbone. ([#494](https://github.com/open-mmlab/mmclassification/pull/494))
- Add the frozen function for Swin Transformer model. ([#574](https://github.com/open-mmlab/mmclassification/pull/574))
- Support using checkpoint in Swin Transformer to save memory. ([#557](https://github.com/open-mmlab/mmclassification/pull/557))
Improvements
- [Reproduction] Reproduce RegNetX training accuracy. ([#587](https://github.com/open-mmlab/mmclassification/pull/587))
- [Reproduction] Reproduce training results of T2T-ViT. ([#610](https://github.com/open-mmlab/mmclassification/pull/610))
- [Enhance] Provide high-acc training settings of ResNet. ([#572](https://github.com/open-mmlab/mmclassification/pull/572))
- [Enhance] Set a random seed when the user does not set a seed. ([#554](https://github.com/open-mmlab/mmclassification/pull/554))
- [Enhance] Added `NumClassCheckHook` and unit tests. ([#559](https://github.com/open-mmlab/mmclassification/pull/559))
- [Enhance] Enhance feature extraction function. ([#593](https://github.com/open-mmlab/mmclassification/pull/593))
- [Enhance] Improve efficiency of precision, recall, f1_score and support. ([#595](https://github.com/open-mmlab/mmclassification/pull/595))
- [Enhance] Improve accuracy calculation performance. ([#592](https://github.com/open-mmlab/mmclassification/pull/592))
- [Refactor] Refactor `analysis_log.py`. ([#529](https://github.com/open-mmlab/mmclassification/pull/529))
- [Refactor] Use new API of matplotlib to handle blocking input in visualization. ([#568](https://github.com/open-mmlab/mmclassification/pull/568))
- [CI] Cancel previous runs that are not completed. ([#583](https://github.com/open-mmlab/mmclassification/pull/583))
- [CI] Skip build CI if only configs or docs modification. ([#575](https://github.com/open-mmlab/mmclassification/pull/575))
Bug Fixes
- Fix test sampler bug. ([#611](https://github.com/open-mmlab/mmclassification/pull/611))
- Try to create a symbolic link, otherwise copy. ([#580](https://github.com/open-mmlab/mmclassification/pull/580))
- Fix a bug for multiple output in swin transformer. ([#571](https://github.com/open-mmlab/mmclassification/pull/571))
Docs Update
- Update mmcv, torch, cuda version in Dockerfile and docs. ([#594](https://github.com/open-mmlab/mmclassification/pull/594))
- Add analysis&misc docs. ([#525](https://github.com/open-mmlab/mmclassification/pull/525))
- Fix docs build dependency. ([#584](https://github.com/open-mmlab/mmclassification/pull/584))
v0.20.0(30/01/2022)
Highlights
- Support K-fold cross-validation. The tutorial will be released later.
- Support HRNet, ConvNeXt, Twins and EfficientNet.
- Support model conversion from PyTorch to Core-ML by a tool.
New Features
- Support K-fold cross-validation. ([#563](https://github.com/open-mmlab/mmclassification/pull/563))
- Support HRNet and add pre-trained models. ([#660](https://github.com/open-mmlab/mmclassification/pull/660))
- Support ConvNeXt and add pre-trained models. ([#670](https://github.com/open-mmlab/mmclassification/pull/670))
- Support Twins and add pre-trained models. ([#642](https://github.com/open-mmlab/mmclassification/pull/642))
- Support EfficientNet and add pre-trained models.([#649](https://github.com/open-mmlab/mmclassification/pull/649))
- Support `features_only` option in `TIMMBackbone`. ([#668](https://github.com/open-mmlab/mmclassification/pull/668))
- Add conversion script from pytorch to Core-ML model. ([#597](https://github.com/open-mmlab/mmclassification/pull/597))
Improvements
- New-style CPU training and inference. ([#674](https://github.com/open-mmlab/mmclassification/pull/674))
- Add setup multi-processing both in train and test. ([#671](https://github.com/open-mmlab/mmclassification/pull/671))
- Rewrite channel split operation in ShufflenetV2. ([#632](https://github.com/open-mmlab/mmclassification/pull/632))
- Deprecate the support for "python setup.py test". ([#646](https://github.com/open-mmlab/mmclassification/pull/646))
- Support single-label, softmax, custom eps by asymmetric loss. ([#609](https://github.com/open-mmlab/mmclassification/pull/609))
- Save class names in best checkpoint created by evaluation hook. ([#641](https://github.com/open-mmlab/mmclassification/pull/641))
Bug Fixes
- Fix potential unexcepted behaviors if `metric_options` is not specified in multi-label evaluation. ([#647](https://github.com/open-mmlab/mmclassification/pull/647))
- Fix API changes in `pytorch-grad-cam>=1.3.7`. ([#656](https://github.com/open-mmlab/mmclassification/pull/656))
- Fix bug which breaks `cal_train_time` in `analyze_logs.py`. ([#662](https://github.com/open-mmlab/mmclassification/pull/662))
Docs Update
- Update README in configs according to OpenMMLab standard. ([#672](https://github.com/open-mmlab/mmclassification/pull/672))
- Update installation guide and README. ([#624](https://github.com/open-mmlab/mmclassification/pull/624))
v0.20.1(07/02/2022)
Bug Fixes
- Fix the MMCV dependency version.
v0.21.0(04/03/2022)
Highlights
- Support ResNetV1c and Wide-ResNet, and provide pre-trained models.
- Support dynamic input shape for ViT-based algorithms. Now our ViT, DeiT, Swin-Transformer and T2T-ViT support forwarding with any input shape.
- Reproduce training results of DeiT. And our DeiT-T and DeiT-S have higher accuracy comparing with the official weights.
New Features
- Add ResNetV1c. ([#692](https://github.com/open-mmlab/mmclassification/pull/692))
- Support Wide-ResNet. ([#715](https://github.com/open-mmlab/mmclassification/pull/715))
- Support gem pooling ([#677](https://github.com/open-mmlab/mmclassification/pull/677))
Improvements
- Reproduce training results of DeiT. ([#711](https://github.com/open-mmlab/mmclassification/pull/711))
- Add ConvNeXt pretrain models on ImageNet-1k. ([#707](https://github.com/open-mmlab/mmclassification/pull/707))
- Support dynamic input shape for ViT-based algorithms. ([#706](https://github.com/open-mmlab/mmclassification/pull/706))
- Add `evaluate` function for ConcatDataset. ([#650](https://github.com/open-mmlab/mmclassification/pull/650))
- Enhance vis-pipeline tool. ([#604](https://github.com/open-mmlab/mmclassification/pull/604))
- Return code 1 if scripts runs failed. ([#694](https://github.com/open-mmlab/mmclassification/pull/694))
- Use PyTorch official `one_hot` to implement `convert_to_one_hot`. ([#696](https://github.com/open-mmlab/mmclassification/pull/696))
- Add a new pre-commit-hook to automatically add a copyright. ([#710](https://github.com/open-mmlab/mmclassification/pull/710))
- Add deprecation message for deploy tools. ([#697](https://github.com/open-mmlab/mmclassification/pull/697))
- Upgrade isort pre-commit hooks. ([#687](https://github.com/open-mmlab/mmclassification/pull/687))
- Use `--gpu-id` instead of `--gpu-ids` in non-distributed multi-gpu training/testing. ([#688](https://github.com/open-mmlab/mmclassification/pull/688))
- Remove deprecation. ([#633](https://github.com/open-mmlab/mmclassification/pull/633))
Bug Fixes
- Fix Conformer forward with irregular input size. ([#686](https://github.com/open-mmlab/mmclassification/pull/686))
- Add `dist.barrier` to fix a bug in directory checking. ([#666](https://github.com/open-mmlab/mmclassification/pull/666))
v0.22.0(30/3/2022)
Highlights
- Support a series of CSP Network, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet.
- A new `CustomDataset` class to help you build dataset of yourself!
- Support ConvMixer, RepMLP and new dataset - CUB dataset.
New Features
- [Feature] Add CSPNet and backbone and checkpoints ([#735](https://github.com/open-mmlab/mmclassification/pull/735))
- [Feature] Add `CustomDataset`. ([#738](https://github.com/open-mmlab/mmclassification/pull/738))
- [Feature] Add diff seeds to diff ranks. ([#744](https://github.com/open-mmlab/mmclassification/pull/744))
- [Feature] Support ConvMixer. ([#716](https://github.com/open-mmlab/mmclassification/pull/716))
- [Feature] Our `dist_train` & `dist_test` tools support distributed training on multiple machines. ([#734](https://github.com/open-mmlab/mmclassification/pull/734))
- [Feature] Add RepMLP backbone and checkpoints. ([#709](https://github.com/open-mmlab/mmclassification/pull/709))
- [Feature] Support CUB dataset. ([#703](https://github.com/open-mmlab/mmclassification/pull/703))
- [Feature] Support ResizeMix. ([#676](https://github.com/open-mmlab/mmclassification/pull/676))
Improvements
- [Enhance] Use `--a-b` instead of `--a_b` in arguments. ([#754](https://github.com/open-mmlab/mmclassification/pull/754))
- [Enhance] Add `get_cat_ids` and `get_gt_labels` to KFoldDataset. ([#721](https://github.com/open-mmlab/mmclassification/pull/721))
- [Enhance] Set torch seed in `worker_init_fn`. ([#733](https://github.com/open-mmlab/mmclassification/pull/733))
Bug Fixes
- [Fix] Fix the discontiguous output feature map of ConvNeXt. ([#743](https://github.com/open-mmlab/mmclassification/pull/743))
Docs Update
- [Docs] Add brief installation steps in README for copy&paste. ([#755](https://github.com/open-mmlab/mmclassification/pull/755))
- [Docs] fix logo url link from mmocr to mmcls. ([#732](https://github.com/open-mmlab/mmclassification/pull/732))
Release v0.16.0(30/9/2021)
Highlights
- We have improved compatibility with downstream repositories like MMDetection and MMSegmentation. We will add some examples about how to use our backbones in MMDetection.
- Add RepVGG backbone and checkpoints. Welcome to use it!
- Add timm backbones wrapper, now you can simply use backbones of pytorch-image-models in MMClassification!
New Features
- Add RepVGG backbone and checkpoints. ([#414](https://github.com/open-mmlab/mmclassification/pull/414))
- Add timm backbones wrapper. ([#427](https://github.com/open-mmlab/mmclassification/pull/427))
Improvements
- Fix TnT compatibility and verbose warning. ([#436](https://github.com/open-mmlab/mmclassification/pull/436))
- Support setting `--out-items` in `tools/test.py`. ([#437](https://github.com/open-mmlab/mmclassification/pull/437))
- Add datetime info and saving model using torch<1.6 format. ([#439](https://github.com/open-mmlab/mmclassification/pull/439))
- Improve downstream repositories compatibility. ([#421](https://github.com/open-mmlab/mmclassification/pull/421))
- Rename the option `--options` to `--cfg-options` in some tools. ([#425](https://github.com/open-mmlab/mmclassification/pull/425))
- Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. ([#422](https://github.com/open-mmlab/mmclassification/pull/422))
Bug Fixes
- Fix format error in `test.py` when metric returns `np.ndarray`. ([#441](https://github.com/open-mmlab/mmclassification/pull/441))
- Fix `publish_model` bug if no parent of `out_file`. ([#463](https://github.com/open-mmlab/mmclassification/pull/463))
- Fix num_classes bug in pytorch2onnx.py. ([#458](https://github.com/open-mmlab/mmclassification/pull/458))
- Fix missing runtime requirement `packaging`. ([#459](https://github.com/open-mmlab/mmclassification/pull/459))
- Fix saving simplified model bug in ONNX export tool. ([#438](https://github.com/open-mmlab/mmclassification/pull/438))
Docs Update
- Update `getting_started.md` and `install.md`. And rewrite `finetune.md`. ([#466](https://github.com/open-mmlab/mmclassification/pull/466))
- Use PyTorch style docs theme. ([#457](https://github.com/open-mmlab/mmclassification/pull/457))
- Update metafile and Readme. ([#435](https://github.com/open-mmlab/mmclassification/pull/435))
- Add `CITATION.cff`. ([#428](https://github.com/open-mmlab/mmclassification/pull/428))
Highlights
- Support Tokens-to-Token ViT backbone and Res2Net backbone. Welcome to use!
- Support ImageNet21k dataset.
- Add pipeline visualization tools. Try it with the [tutorials](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#pipeline-visualization)!
New Features
- Add Tokens-to-Token ViT backbone and converted checkpoints. ([#467](https://github.com/open-mmlab/mmclassification/pull/467))
- Add Res2Net backbone and converted weights. ([#465](https://github.com/open-mmlab/mmclassification/pull/465))
- Support ImageNet21k dataset. ([#461](https://github.com/open-mmlab/mmclassification/pull/461))
- Support seesaw loss. ([#500](https://github.com/open-mmlab/mmclassification/pull/500))
- Add pipeline visualization tools. ([#406](https://github.com/open-mmlab/mmclassification/pull/406))
- Add a tool to find broken files. ([#482](https://github.com/open-mmlab/mmclassification/pull/482))
- Add a tool to test TorchServe. ([#468](https://github.com/open-mmlab/mmclassification/pull/468))
Improvements
- Refator Vision Transformer. ([#395](https://github.com/open-mmlab/mmclassification/pull/395))
- Use context manager to reuse matplotlib figures. ([#432](https://github.com/open-mmlab/mmclassification/pull/432))
Bug Fixes
- Remove `DistSamplerSeedHook` if use `IterBasedRunner`. ([#501](https://github.com/open-mmlab/mmclassification/pull/501))
- Set the priority of `EvalHook` to "LOW" to avoid a bug of `IterBasedRunner`. ([#488](https://github.com/open-mmlab/mmclassification/pull/488))
- Fix a wrong parameter of `get_root_logger` in `apis/train.py`. ([#486](https://github.com/open-mmlab/mmclassification/pull/486))
- Fix version check in dataset builder. ([#474](https://github.com/open-mmlab/mmclassification/pull/474))
Docs Update
- Add English Colab tutorials and update Chinese Colab tutorials. ([#483](https://github.com/open-mmlab/mmclassification/pull/483), [#497](https://github.com/open-mmlab/mmclassification/pull/497))
- Add tutuorial for config files. ([#487](https://github.com/open-mmlab/mmclassification/pull/487))
- Add model-pages in Model Zoo. ([#480](https://github.com/open-mmlab/mmclassification/pull/480))
- Add code-spell pre-commit hook and fix a large mount of typos. ([#470](https://github.com/open-mmlab/mmclassification/pull/470))
Highlights
- Support MLP-Mixer backbone and provide pre-trained checkpoints.
- Add a tool to visualize the learning rate curve of the training phase. Welcome to use with the [tutorial](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization)!
New Features
- Add MLP Mixer Backbone. ([#528](https://github.com/open-mmlab/mmclassification/pull/528), [#539](https://github.com/open-mmlab/mmclassification/pull/539))
- Support positive weights in BCE. ([#516](https://github.com/open-mmlab/mmclassification/pull/516))
- Add a tool to visualize learning rate in each iterations. ([#498](https://github.com/open-mmlab/mmclassification/pull/498))
Improvements
- Use CircleCI to do unit tests. ([#567](https://github.com/open-mmlab/mmclassification/pull/567))
- Focal loss for single label tasks. ([#548](https://github.com/open-mmlab/mmclassification/pull/548))
- Remove useless `import_modules_from_string`. ([#544](https://github.com/open-mmlab/mmclassification/pull/544))
- Rename config files according to the config name standard. ([#508](https://github.com/open-mmlab/mmclassification/pull/508))
- Use `reset_classifier` to remove head of timm backbones. ([#534](https://github.com/open-mmlab/mmclassification/pull/534))
- Support passing arguments to loss from head. ([#523](https://github.com/open-mmlab/mmclassification/pull/523))
- Refactor `Resize` transform and add `Pad` transform. ([#506](https://github.com/open-mmlab/mmclassification/pull/506))
- Update mmcv dependency version. ([#509](https://github.com/open-mmlab/mmclassification/pull/509))
Bug Fixes
- Fix bug when using `ClassBalancedDataset`. ([#555](https://github.com/open-mmlab/mmclassification/pull/555))
- Fix a bug when using iter-based runner with 'val' workflow. ([#542](https://github.com/open-mmlab/mmclassification/pull/542))
- Fix interpolation method checking in `Resize`. ([#547](https://github.com/open-mmlab/mmclassification/pull/547))
- Fix a bug when load checkpoints in mulit-GPUs environment. ([#527](https://github.com/open-mmlab/mmclassification/pull/527))
- Fix an error on indexing scalar metrics in `analyze_result.py`. ([#518](https://github.com/open-mmlab/mmclassification/pull/518))
- Fix wrong condition judgment in `analyze_logs.py` and prevent empty curve. ([#510](https://github.com/open-mmlab/mmclassification/pull/510))
Docs Update
- Fix vit config and model broken links. ([#564](https://github.com/open-mmlab/mmclassification/pull/564))
- Add abstract and image for every paper. ([#546](https://github.com/open-mmlab/mmclassification/pull/546))
- Add mmflow and mim in banner and readme. ([#543](https://github.com/open-mmlab/mmclassification/pull/543))
- Add schedule and runtime tutorial docs. ([#499](https://github.com/open-mmlab/mmclassification/pull/499))
- Add the top-5 acc in ResNet-CIFAR README. ([#531](https://github.com/open-mmlab/mmclassification/pull/531))
- Fix TOC of `visualization.md` and add example images. ([#513](https://github.com/open-mmlab/mmclassification/pull/513))
- Use docs link of other projects and add MMCV docs. ([#511](https://github.com/open-mmlab/mmclassification/pull/511))