Слияние кода завершено, страница обновится автоматически
_base_ = [
'../_base_/datasets/unconditional_imgs_128x128.py',
'../_base_/gen_default_runtime.py'
]
# define model
model = dict(
type='LSGAN',
noise_size=1024,
data_preprocessor=dict(type='EditDataPreprocessor'),
generator=dict(
type='LSGANGenerator',
output_scale=128,
base_channels=256,
noise_size=1024),
discriminator=dict(
type='LSGANDiscriminator', input_scale=128, base_channels=64))
total_iters = 160000
disc_step = 1
train_cfg = dict(max_iters=total_iters * disc_step)
# define dataset
batch_size = 64
data_root = './data/lsun/images/bedroom_train'
train_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
test_bs = 32
val_dataloader = dict(batch_size=test_bs, dataset=dict(data_root=data_root))
test_dataloader = dict(batch_size=test_bs, dataset=dict(data_root=data_root))
optim_wrapper = dict(
generator=dict(optimizer=dict(type='Adam', lr=0.0001, betas=(0.5, 0.99))),
discriminator=dict(
optimizer=dict(type='Adam', lr=0.0001, betas=(0.5, 0.99))))
default_hooks = dict(
checkpoint=dict(save_best=['FID-Full-50k/fid'], rule=['less']))
# adjust running config
# METRICS
metrics = [
dict(
type='FrechetInceptionDistance',
prefix='FID-50k',
fake_nums=50000,
real_nums=50000,
inception_style='PyTorch',
sample_model='orig')
]
val_evaluator = dict(metrics=metrics)
test_evaluator = dict(metrics=metrics)
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )