1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/open-mmlab-mmediting

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
README.md 3.1 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
Yanhong Zeng Отправлено 16.01.2023 15:45 8b30739

PGGAN (ICLR'2018)

Progressive Growing of GANs for Improved Quality, Stability, and Variation

Task: Unconditional GANs

Abstract

We describe a new training methodology for generative adversarial networks. The key idea is to grow both the generator and discriminator progressively: starting from a low resolution, we add new layers that model increasingly fine details as training progresses. This both speeds the training up and greatly stabilizes it, allowing us to produce images of unprecedented quality, e.g., CelebA images at 1024^2. We also propose a simple way to increase the variation in generated images, and achieve a record inception score of 8.80 in unsupervised CIFAR10. Additionally, we describe several implementation details that are important for discouraging unhealthy competition between the generator and discriminator. Finally, we suggest a new metric for evaluating GAN results, both in terms of image quality and variation. As an additional contribution, we construct a higher-quality version of the CelebA dataset.

Results and models

Results (compressed) from our PGGAN trained in CelebA-HQ@1024
Model Dataset MS-SSIM SWD(xx,xx,xx,xx/avg) Download
pggan_128x128 celeba-cropped 0.3023 3.42, 4.04, 4.78, 20.38/8.15 model
pggan_128x128 lsun-bedroom 0.0602 3.5, 2.96, 2.76, 9.65/4.72 model
pggan_1024x1024 celeba-hq 0.3379 8.93, 3.98, 3.07, 2.64/4.655 model

Citation

PGGAN (arXiv'2017)
@article{karras2017progressive,
  title={Progressive growing of gans for improved quality, stability, and variation},
  author={Karras, Tero and Aila, Timo and Laine, Samuli and Lehtinen, Jaakko},
  journal={arXiv preprint arXiv:1710.10196},
  year={2017},
  url={https://arxiv.org/abs/1710.10196},
}

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/open-mmlab-mmediting.git
git@api.gitlife.ru:oschina-mirror/open-mmlab-mmediting.git
oschina-mirror
open-mmlab-mmediting
open-mmlab-mmediting
main