1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/paddlepaddle-Serving

Присоединиться к Gitlife
Откройте для себя и примите участие в публичных проектах с открытым исходным кодом с участием более 10 миллионов разработчиков. Приватные репозитории также полностью бесплатны :)
Присоединиться бесплатно
Клонировать/Скачать
Cube_Quant_CN.md 2.4 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
huangjianhui Отправлено 15.11.2021 15:55 d47acc5

Cube稀疏参数索引量化存储使用指南

(简体中文|English)

总体概览

我们在之前的文章中,知道稀疏参数是维度很大的一系列浮点数,而浮点数在计算机中需要4 Byte的存储空间。事实上,我们并不需要很高的浮点数精度就可以实现相当的模型效果,换来大量的空间节约,加快模型的加载速度和查询速度。

前序要求

请先读取 稀疏参数索引服务Cube单机版使用指南

组件介绍

seq_generator:

此工具用于把Paddle的模型转换成Sequence File,在这里,我给出了两种模式,第一种是普通模式,生成的KV序列当中的Value以未压缩的浮点数来进行保存。第二种是量化模式,生成的KV序列当中的Value按照 [min, max, bytes]来存储。具体原理请参见 (Post-Training 4-bit Quantization on Embedding Tables)

使用方法

在Serving主目录下,到criteo_ctr_with_cube目录下训练出模型

cd Serving/examples/C++/PaddleRec/criteo_ctr_with_cube
python local_train.py # 生成模型

接下来可以使用量化和非量化两种方式去生成Sequence File用于Cube稀疏参数索引。

seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature # 未量化模式
seq_generator ctr_serving_model/SparseFeatFactors ./cube_model/feature 8 #量化模式

此命令会讲ctr_serving_model目录下的稀疏参数文件SparseFeatFactors转换为cube_model目录下的feature文件(Sequence File格式)。目前量化工具仅支持8bit量化,未来将支持压缩率更高和种类更多的量化方法。

用量化模型启动Serving

在Serving当中,使用general_dist_kv_quant_infer op来进行预测时使用量化模型。具体详见 Serving/examples/C++/PaddleRec/criteo_ctr_with_cube/test_server_quant.py。客户端部分不需要做任何改动。

为方便用户做demo,我们给出了从0开始启动量化模型Serving。

cd Serving/examples/C++/PaddleRec/criteo_ctr_with_cube
python local_train.py
cp ../../../build_server/core/predictor/seq_generator seq_generator
cp ../../../build_server/output/bin/cube* ./cube/
sh cube_quant_prepare.sh &
python test_server_quant.py ctr_serving_model_kv &
python test_client.py ctr_client_conf/serving_client_conf.prototxt ./raw_data

用户可以将量化后的AUC结果同量化前的AUC做比较

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/paddlepaddle-Serving.git
git@api.gitlife.ru:oschina-mirror/paddlepaddle-Serving.git
oschina-mirror
paddlepaddle-Serving
paddlepaddle-Serving
v0.9.0