Слияние кода завершено, страница обновится автоматически
import os
import random
import time
import json
import torch
import torchvision
import numpy as np
import pandas as pd
import warnings
from datetime import datetime
from torch import nn,optim
from config import config
from collections import OrderedDict
from torch.autograd import Variable
from torch.utils.data import DataLoader
from dataset.dataloader import *
from sklearn.model_selection import train_test_split,StratifiedKFold
from timeit import default_timer as timer
from models.model import *
from utils import *
#1. set random.seed and cudnn performance
random.seed(config.seed)
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
torch.backends.cudnn.benchmark = True
warnings.filterwarnings('ignore')
#2. evaluate func
def evaluate(val_loader,model,criterion):
#2.1 define meters
losses = AverageMeter()
top1 = AverageMeter()
top2 = AverageMeter()
#2.2 switch to evaluate mode and confirm model has been transfered to cuda
model.cuda()
model.eval()
with torch.no_grad():
for i,(input,target) in enumerate(val_loader):
input = Variable(input).cuda()
target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
#target = Variable(target).cuda()
#2.2.1 compute output
output = model(input)
loss = criterion(output,target)
#2.2.2 measure accuracy and record loss
precision1,precision2 = accuracy(output,target,topk=(1,2))
losses.update(loss.item(),input.size(0))
top1.update(precision1[0],input.size(0))
top2.update(precision2[0],input.size(0))
return [losses.avg,top1.avg,top2.avg]
#3. test model on public dataset and save the probability matrix
def test(test_loader,model,folds):
#3.1 confirm the model converted to cuda
csv_map = OrderedDict({"filename":[],"probability":[]})
model.cuda()
model.eval()
with open("./submit/baseline.json","w",encoding="utf-8") as f :
submit_results = []
for i,(input,filepath) in enumerate(tqdm(test_loader)):
#3.2 change everything to cuda and get only basename
filepath = [os.path.basename(x) for x in filepath]
with torch.no_grad():
image_var = Variable(input).cuda()
#3.3.output
#print(filepath)
#print(input,input.shape)
y_pred = model(image_var)
#print(y_pred.shape)
smax = nn.Softmax(1)
smax_out = smax(y_pred)
#3.4 save probability to csv files
csv_map["filename"].extend(filepath)
for output in smax_out:
prob = ";".join([str(i) for i in output.data.tolist()])
csv_map["probability"].append(prob)
result = pd.DataFrame(csv_map)
result["probability"] = result["probability"].map(lambda x : [float(i) for i in x.split(";")])
for index, row in result.iterrows():
pred_label = np.argmax(row['probability'])
if pred_label > 43:
pred_label = pred_label + 2
submit_results.append({"image_id":row['filename'],"disease_class":pred_label})
json.dump(submit_results,f,ensure_ascii=False,cls = MyEncoder)
#4. more details to build main function
def main():
fold = 0
#4.1 mkdirs
if not os.path.exists(config.submit):
os.mkdir(config.submit)
if not os.path.exists(config.weights):
os.mkdir(config.weights)
if not os.path.exists(config.best_models):
os.mkdir(config.best_models)
if not os.path.exists(config.logs):
os.mkdir(config.logs)
if not os.path.exists(config.weights + config.model_name + os.sep +str(fold) + os.sep):
os.makedirs(config.weights + config.model_name + os.sep +str(fold) + os.sep)
if not os.path.exists(config.best_models + config.model_name + os.sep +str(fold) + os.sep):
os.makedirs(config.best_models + config.model_name + os.sep +str(fold) + os.sep)
#4.2 get model and optimizer
model = get_net()
#model = torch.nn.DataParallel(model)
model.cuda()
#optimizer = optim.SGD(model.parameters(),lr = config.lr,momentum=0.9,weight_decay=config.weight_decay)
optimizer = optim.Adam(model.parameters(),lr = config.lr,amsgrad=True,weight_decay=config.weight_decay)
criterion = nn.CrossEntropyLoss().cuda()
#criterion = FocalLoss().cuda()
log = Logger()
log.open(config.logs + "log_train.txt",mode="a")
log.write("\n----------------------------------------------- [START %s] %s\n\n" % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), '-' * 51))
#4.3 some parameters for K-fold and restart model
start_epoch = 0
best_precision1 = 0
best_precision_save = 0
resume = False
#4.4 restart the training process
if resume:
checkpoint = torch.load(config.best_models + str(fold) + "/model_best.pth.tar")
start_epoch = checkpoint["epoch"]
fold = checkpoint["fold"]
best_precision1 = checkpoint["best_precision1"]
model.load_state_dict(checkpoint["state_dict"])
optimizer.load_state_dict(checkpoint["optimizer"])
#4.5 get files and split for K-fold dataset
#4.5.1 read files
train_ = get_files(config.train_data,"train")
#val_data_list = get_files(config.val_data,"val")
test_files = get_files(config.test_data,"test")
"""
#4.5.2 split
split_fold = StratifiedKFold(n_splits=3)
folds_indexes = split_fold.split(X=origin_files["filename"],y=origin_files["label"])
folds_indexes = np.array(list(folds_indexes))
fold_index = folds_indexes[fold]
#4.5.3 using fold index to split for train data and val data
train_data_list = pd.concat([origin_files["filename"][fold_index[0]],origin_files["label"][fold_index[0]]],axis=1)
val_data_list = pd.concat([origin_files["filename"][fold_index[1]],origin_files["label"][fold_index[1]]],axis=1)
"""
train_data_list,val_data_list = train_test_split(train_,test_size = 0.15,stratify=train_["label"])
#4.5.4 load dataset
train_dataloader = DataLoader(ChaojieDataset(train_data_list),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=True)
val_dataloader = DataLoader(ChaojieDataset(val_data_list,train=False),batch_size=config.batch_size,shuffle=True,collate_fn=collate_fn,pin_memory=False)
test_dataloader = DataLoader(ChaojieDataset(test_files,test=True),batch_size=1,shuffle=False,pin_memory=False)
#scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,"max",verbose=1,patience=3)
scheduler = optim.lr_scheduler.StepLR(optimizer,step_size = 10,gamma=0.1)
#4.5.5.1 define metrics
train_losses = AverageMeter()
train_top1 = AverageMeter()
train_top2 = AverageMeter()
valid_loss = [np.inf,0,0]
model.train()
#logs
log.write('** start training here! **\n')
log.write(' |------------ VALID -------------|----------- TRAIN -------------|------Accuracy------|------------|\n')
log.write('lr iter epoch | loss top-1 top-2 | loss top-1 top-2 | Current Best | time |\n')
log.write('-------------------------------------------------------------------------------------------------------------------------------\n')
#4.5.5 train
start = timer()
for epoch in range(start_epoch,config.epochs):
scheduler.step(epoch)
# train
#global iter
for iter,(input,target) in enumerate(train_dataloader):
#4.5.5 switch to continue train process
model.train()
input = Variable(input).cuda()
target = Variable(torch.from_numpy(np.array(target)).long()).cuda()
#target = Variable(target).cuda()
output = model(input)
loss = criterion(output,target)
precision1_train,precision2_train = accuracy(output,target,topk=(1,2))
train_losses.update(loss.item(),input.size(0))
train_top1.update(precision1_train[0],input.size(0))
train_top2.update(precision2_train[0],input.size(0))
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr = get_learning_rate(optimizer)
print('\r',end='',flush=True)
print('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\
lr, iter/len(train_dataloader) + epoch, epoch,
valid_loss[0], valid_loss[1], valid_loss[2],
train_losses.avg, train_top1.avg, train_top2.avg,str(best_precision_save),
time_to_str((timer() - start),'min'))
, end='',flush=True)
#evaluate
lr = get_learning_rate(optimizer)
#evaluate every half epoch
valid_loss = evaluate(val_dataloader,model,criterion)
is_best = valid_loss[1] > best_precision1
best_precision1 = max(valid_loss[1],best_precision1)
try:
best_precision_save = best_precision1.cpu().data.numpy()
except:
pass
save_checkpoint({
"epoch":epoch + 1,
"model_name":config.model_name,
"state_dict":model.state_dict(),
"best_precision1":best_precision1,
"optimizer":optimizer.state_dict(),
"fold":fold,
"valid_loss":valid_loss,
},is_best,fold)
#adjust learning rate
#scheduler.step(valid_loss[1])
print("\r",end="",flush=True)
log.write('%0.4f %5.1f %6.1f | %0.3f %0.3f %0.3f | %0.3f %0.3f %0.3f | %s | %s' % (\
lr, 0 + epoch, epoch,
valid_loss[0], valid_loss[1], valid_loss[2],
train_losses.avg, train_top1.avg, train_top2.avg, str(best_precision_save),
time_to_str((timer() - start),'min'))
)
log.write('\n')
time.sleep(0.01)
best_model = torch.load(config.best_models + os.sep+config.model_name+os.sep+ str(fold) +os.sep+ 'model_best.pth.tar')
model.load_state_dict(best_model["state_dict"])
test(test_dataloader,model,fold)
if __name__ =="__main__":
main()
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )