Слияние кода завершено, страница обновится автоматически
from __future__ import division
"""
Creates a ResNeXt Model as defined in:
Xie, S., Girshick, R., Dollar, P., Tu, Z., & He, K. (2016).
Aggregated residual transformations for deep neural networks.
arXiv preprint arXiv:1611.05431.
import from https://github.com/facebookresearch/ResNeXt/blob/master/models/resnext.lua
"""
import math
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
import torch
from padding_same_conv import Sobel_Conv
__all__ = ['resnext50', 'resnext101', 'resnext152']
class Bottleneck(nn.Module):
"""
RexNeXt bottleneck type C
"""
expansion = 4
def __init__(self, inplanes, planes, baseWidth, cardinality, stride=1, downsample=None):
""" Constructor
Args:
inplanes: input channel dimensionality
planes: output channel dimensionality
baseWidth: base width.
cardinality: num of convolution groups.
stride: conv stride. Replaces pooling layer.
"""
super(Bottleneck, self).__init__()
D = int(math.floor(planes * (baseWidth / 64)))
C = cardinality
self.conv1 = nn.Conv2d(inplanes, D*C, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(D*C)
self.conv2 = nn.Conv2d(D*C, D*C, kernel_size=3, stride=stride, padding=1, groups=C, bias=False)
self.bn2 = nn.BatchNorm2d(D*C)
self.conv3 = nn.Conv2d(D*C, planes * 4, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
"""
ResNext optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1611.05431.pdf
"""
def __init__(self, baseWidth, cardinality, layers, num_classes):
""" Constructor
Args:
baseWidth: baseWidth for ResNeXt.
cardinality: number of convolution groups.
layers: config of layers, e.g., [3, 4, 6, 3]
num_classes: number of classes
"""
super(ResNeXt, self).__init__()
block = Bottleneck
self.cardinality = cardinality
self.baseWidth = baseWidth
self.num_classes = num_classes
self.inplanes = 64
self.output_size = 64
# add sobel filters
self.sobel_conv = Sobel_Conv()
self.conv1 = nn.Conv2d(3, 64, 7, 2, 3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], 2)
self.layer3 = self._make_layer(block, 256, layers[2], 2)
self.layer4 = self._make_layer(block, 512, layers[3], 2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
""" Stack n bottleneck modules where n is inferred from the depth of the network.
Args:
block: block type used to construct ResNext
planes: number of output channels (need to multiply by block.expansion)
blocks: number of blocks to be built
stride: factor to reduce the spatial dimensionality in the first bottleneck of the block.
Returns: a Module consisting of n sequential bottlenecks.
"""
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, self.baseWidth, self.cardinality, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, self.baseWidth, self.cardinality))
return nn.Sequential(*layers)
def forward(self, x):
x = self.sobel_conv(x)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnext50(baseWidth, cardinality):
"""
Construct ResNeXt-50.
"""
model = ResNeXt(baseWidth, cardinality, [3, 4, 6, 3], 1000)
return model
def resnext101(baseWidth, cardinality):
"""
Construct ResNeXt-101.
"""
model = ResNeXt(baseWidth, cardinality, [3, 4, 23, 3], 1000)
return model
def resnext152(baseWidth, cardinality):
"""
Construct ResNeXt-152.
"""
model = ResNeXt(baseWidth, cardinality, [3, 8, 36, 3], 1000)
return model
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )