1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/xuweizhen-XWZkeshe

В этом репозитории не указан файл с открытой лицензией (LICENSE). При использовании обратитесь к конкретному описанию проекта и его зависимостям в коде.
Клонировать/Скачать
mobilenetv3.py 7.6 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
xuweizhen Отправлено 30.03.2020 18:38 95e561a
"""
Creates a MobileNetV3 Model as defined in:
Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, Hartwig Adam. (2019).
Searching for MobileNetV3
arXiv preprint arXiv:1905.02244.
"""
import torch.nn as nn
import math
__all__ = ['mobilenetv3_large', 'mobilenetv3_small']
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class h_sigmoid(nn.Module):
def __init__(self, inplace=True):
super(h_sigmoid, self).__init__()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def __init__(self, inplace=True):
super(h_swish, self).__init__()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class SELayer(nn.Module):
def __init__(self, channel, reduction=4):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel),
h_sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y
def conv_3x3_bn(inp, oup, stride):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
h_swish()
)
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
h_swish()
)
class InvertedResidual(nn.Module):
def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
self.identity = stride == 1 and inp == oup
if inp == hidden_dim:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
h_swish() if use_hs else nn.ReLU(inplace=True),
# Squeeze-and-Excite
SELayer(hidden_dim) if use_se else nn.Sequential(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
h_swish() if use_hs else nn.ReLU(inplace=True),
# dw
nn.Conv2d(hidden_dim, hidden_dim, kernel_size, stride, (kernel_size - 1) // 2, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
# Squeeze-and-Excite
SELayer(hidden_dim) if use_se else nn.Sequential(),
h_swish() if use_hs else nn.ReLU(inplace=True),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.identity:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
def __init__(self, cfgs, mode, num_classes=1000, width_mult=1.):
super(MobileNetV3, self).__init__()
# setting of inverted residual blocks
self.cfgs = cfgs
assert mode in ['large', 'small']
# building first layer
input_channel = _make_divisible(16 * width_mult, 8)
layers = [conv_3x3_bn(3, input_channel, 2)]
# building inverted residual blocks
block = InvertedResidual
for k, exp_size, c, use_se, use_hs, s in self.cfgs:
output_channel = _make_divisible(c * width_mult, 8)
layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
input_channel = output_channel
self.features = nn.Sequential(*layers)
# building last several layers
self.conv = nn.Sequential(
conv_1x1_bn(input_channel, _make_divisible(exp_size * width_mult, 8)),
SELayer(_make_divisible(exp_size * width_mult, 8)) if mode == 'small' else nn.Sequential()
)
self.avgpool = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
h_swish()
)
output_channel = _make_divisible(1280 * width_mult, 8) if width_mult > 1.0 else 1280
self.classifier = nn.Sequential(
nn.Linear(_make_divisible(exp_size * width_mult, 8), output_channel),
nn.BatchNorm1d(output_channel) if mode == 'small' else nn.Sequential(),
h_swish(),
nn.Linear(output_channel, num_classes),
nn.BatchNorm1d(num_classes) if mode == 'small' else nn.Sequential(),
h_swish() if mode == 'small' else nn.Sequential()
)
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.conv(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def mobilenetv3_large(**kwargs):
"""
Constructs a MobileNetV3-Large model
"""
cfgs = [
# k, t, c, SE, NL, s
[3, 16, 16, 0, 0, 1],
[3, 64, 24, 0, 0, 2],
[3, 72, 24, 0, 0, 1],
[5, 72, 40, 1, 0, 2],
[5, 120, 40, 1, 0, 1],
[5, 120, 40, 1, 0, 1],
[3, 240, 80, 0, 1, 2],
[3, 200, 80, 0, 1, 1],
[3, 184, 80, 0, 1, 1],
[3, 184, 80, 0, 1, 1],
[3, 480, 112, 1, 1, 1],
[3, 672, 112, 1, 1, 1],
[5, 672, 160, 1, 1, 1],
[5, 672, 160, 1, 1, 2],
[5, 960, 160, 1, 1, 1]
]
return MobileNetV3(cfgs, mode='large', **kwargs)
def mobilenetv3_small(**kwargs):
"""
Constructs a MobileNetV3-Small model
"""
cfgs = [
# k, t, c, SE, NL, s
[3, 16, 16, 1, 0, 2],
[3, 72, 24, 0, 0, 2],
[3, 88, 24, 0, 0, 1],
[5, 96, 40, 1, 1, 2],
[5, 240, 40, 1, 1, 1],
[5, 240, 40, 1, 1, 1],
[5, 120, 48, 1, 1, 1],
[5, 144, 48, 1, 1, 1],
[5, 288, 96, 1, 1, 2],
[5, 576, 96, 1, 1, 1],
[5, 576, 96, 1, 1, 1],
]
return MobileNetV3(cfgs, mode='small', **kwargs)

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/xuweizhen-XWZkeshe.git
git@api.gitlife.ru:oschina-mirror/xuweizhen-XWZkeshe.git
oschina-mirror
xuweizhen-XWZkeshe
xuweizhen-XWZkeshe
master