![]() Vitis AI v1.4 |
This directory contains instructions for running DPUCZDX8G on Zynq Ultrascale+ MPSoC platforms. DPUCZDX8G is a configurable computation engine dedicated for convolutional neural networks. It includes a set of highly optimized instructions, and supports most convolutional neural networks, such as VGG, ResNet, GoogleNet, YOLO, SSD, MobileNet, FPN, and others. With Vitis-AI, Xilinx has integrated all the edge and cloud solutions under a unified API and toolset.
Please install it on your local host linux system, not in the docker system.
./host_cross_compiler_setup.sh
Note that the Cross Compiler will be installed in ~/petalinux_sdk_2021.1
by default.
For the kv260, use host_cross_compiler_setup_2020.2.sh
to install the cross-compiler.
source ~/petalinux_sdk_2021.1/environment-setup-cortexa72-cortexa53-xilinx-linux
Note that if you close the current terminal, you need to re-execute the above instructions in the new terminal interface.
To improve the user experience, the Vitis AI Runtime packages, VART samples, Vitis-AI-Library samples and models have been built into the board image. Therefore, user does not need to install Vitis AI Runtime packages and model package on the board separately. However, users can still install the model or Vitis AI Runtime on their own image or on the official image by following these steps.
Installing a Board Image.
Download the SD card system image files from the following links:
Note: For ZCU102/ZCU104, the version of the board image should be 2020.2 or above.
For KV260, the version of the board image is 2020.2.
If you use 2020.2 system, use the corresponding 2020.2 cross-compiler.
Use Etcher software to burn the image file onto the SD card.
Insert the SD card with the image into the destination board.
Plug in the power and boot the board using the serial port to operate on the system.
Set up the IP information of the board using the serial port.
For the details, please refer to Setting Up the Evaluation Board
(Optional) Running zynqmp_dpu_optimize.sh
to optimize the board setting.
The script runs automatically after the board boots up with the official image.
But you can also download the dpu_sw_optimize.tar.gz
from here.
cd ~/dpu_sw_optimize/zynqmp/
./zynqmp_dpu_optimize.sh
(Optional) How to install the Vitis AI for PetaLinux 2021.1
There are two ways to install the dependent libraries of Vitis-AI. One is to rebuild the system by configuring PetaLinux and the other is to install the Vitis-AI online via dnf
.
petalinux-upgrade
command, then rebuild the petalinux project . More details please refer to the PetaLinux Tools Documentation:Reference Guide(UG1144) Chapter 6 Upgrading the Workspace.2021.1 update1
release, run the following command and source the tool's setting script.
rm <path to petalinux tool>/components/yocto/source/aarch64
petalinux-upgrade -u 'http://petalinux.xilinx.com/sswreleases/rel-v2021/sdkupdate/2021.1_update1/' -p 'aarch64'
source settings.sh
dnf install packagegroup-petalinux-vitisai
to complete the installation on the target.(Optional) How to update Vitis AI Runtime and install them separately.
If you want to update the Vitis AI Runtime or install them to your custom board image, follow these steps.
scp -r mpsoc root@IP_OF_BOARD:~/
cd ~/mpsoc/VART
bash target_vart_setup.sh
Note that for the kv260, use target_vart_setup_2020.2.sh
to install the VART.
(Optional) Download the model. For each model, there will be a yaml file which is used for describe all the details about the model. In the yaml, you will find the model's download links for different platforms. Please choose the corresponding model and download it. Click Xilinx AI Model Zoo to view all the models.
resnet50
of ZCU102 as an example. cd /workspace
wget https://www.xilinx.com/bin/public/openDownload?filename=resnet50-zcu102_zcu104_kv260-r1.4.1.tar.gz -O resnet50-zcu102_zcu104_kv260-r1.4.1.tar.gz
scp resnet50-zcu102_zcu104_kv260-r1.4.1.tar.gz root@IP_OF_BOARD:~/
tar -xzvf resnet50-zcu102_zcu104_kv260-r1.4.1.tar.gz
cp resnet50 /usr/share/vitis_ai_library/models -r
Download the vitis_ai_runtime_r1.4.x_image_video.tar.gz from host to the target using scp with the following command.
[Host]$scp vitis_ai_runtime_r1.4.*_image_video.tar.gz root@[IP_OF_BOARD]:~/
Unzip the vitis_ai_runtime_r1.4.x_image_video.tar.gz
package on the target.
cd ~
tar -xzvf vitis_ai_runtime_r*1.4*_image_video.tar.gz -C Vitis-AI/demo/VART
Enter the directory of samples in the target board. Take resnet50
as an example.
cd ~/Vitis-AI/demo/VART/resnet50
Run the example.
./resnet50 /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel
For examples with video input, only webm
and raw
format are supported by default with the official system image.
If you want to support video data in other formats, you need to install the relevant packages on the system.
No. | Example Name | Command |
---|---|---|
1 | resnet50 | ./resnet50 /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel |
2 | resnet50_pt | ./resnet50_pt /usr/share/vitis_ai_library/models/resnet50_pt/resnet50_pt.xmodel ../images/001.jpg |
3 | resnet50_ext | ./resnet50_ext /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel ../images/001.jpg |
4 | resnet50_mt_py | python3 resnet50.py 1 /usr/share/vitis_ai_library/models/resnet50/resnet50.xmodel |
5 | inception_v1_mt_py | python3 inception_v1.py 1 /usr/share/vitis_ai_library/models/inception_v1_tf/inception_v1_tf.xmodel |
6 | pose_detection | ./pose_detection video/pose.webm /usr/share/vitis_ai_library/models/sp_net/sp_net.xmodel /usr/share/vitis_ai_library/models/ssd_pedestrian_pruned_0_97/ssd_pedestrian_pruned_0_97.xmodel |
7 | video_analysis | ./video_analysis video/structure.webm /usr/share/vitis_ai_library/models/ssd_traffic_pruned_0_9/ssd_traffic_pruned_0_9.xmodel |
8 | adas_detection | ./adas_detection video/adas.webm /usr/share/vitis_ai_library/models/yolov3_adas_pruned_0_9/yolov3_adas_pruned_0_9.xmodel |
9 | segmentation | ./segmentation video/traffic.webm /usr/share/vitis_ai_library/models/fpn/fpn.xmodel |
10 | squeezenet_pytorch | ./squeezenet_pytorch /usr/share/vitis_ai_library/models/squeezenet_pt/squeezenet_pt.xmodel |
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )