Слияние кода завершено, страница обновится автоматически
dist_train_arm.sh
for ARM device and update NPU results. (#1218)MMClsWandbHook
stuck. (#1242)device_ids
in tools/test.py
. (#1215)pytorch2torchscript.md
. (#1173)miscellaneous.md
. (#1137)ClassBalancedDataset
. (#901)get_sinusoid_encoding
from third-party implementation. (#965)RepVGG
. (#985)train_step
instead of forward
in PreciseBNHook (#964)forward_dummy
to calculate FLOPS. (#953)torch.meshgrid
. (#860)--out-dir
option of analyze_results.py. (#898)--local_rank
.SwinTransformer
. (#749)CustomDataset
class to help you build dataset of yourself!CustomDataset
. (#738)dist_train
& dist_test
tools support distributed training on multiple machines. (#734)--a-b
instead of --a_b
in arguments. (#754)get_cat_ids
and get_gt_labels
to KFoldDataset. (#721)worker_init_fn
. (#733)evaluate
function for ConcatDataset. (#650)one_hot
to implement convert_to_one_hot
. (#696)--gpu-id
instead of --gpu-ids
in non-distributed multi-gpu training/testing. (#688)dist.barrier
to fix a bug in directory checking. (#666)features_only
option in TIMMBackbone
. (#668)metric_options
is not specified in multi-label evaluation. (#647)pytorch-grad-cam>=1.3.7
. (#656)cal_train_time
in analyze_logs.py
. (#662)NumClassCheckHook
and unit tests. (#559)analysis_log.py
. (#529)import_modules_from_string
. (#544)reset_classifier
to remove head of timm backbones. (#534)Resize
transform and add Pad
transform. (#506)ClassBalancedDataset
. (#555)Resize
. (#547)analyze_result.py
. (#518)analyze_logs.py
and prevent empty curve. (#510)visualization.md
and add example images. (#513)DistSamplerSeedHook
if use IterBasedRunner
. (#501)EvalHook
to "LOW" to avoid a bug when using IterBasedRunner
. (#488)get_root_logger
in apis/train.py
. (#486)--out-items
in tools/test.py
. (#437)--options
to --cfg-options
in some tools. (#425)test.py
when metric returns np.ndarray
. (#441)publish_model
bug if no parent of out_file
. (#463)packaging
. (#459)getting_started.md
and install.md
. And rewrite finetune.md
. (#466)CITATION.cff
. (#428)hparams
argument in AutoAugment
and RandAugment
to provide hyperparameters for sub-policies.SELayer
.hparams
argument in AutoAugment
and RandAugment
and some other improvement. (#398)SELayer
to support custom squeeze channels. (#417)post_process
function to handle pred result processing. (#390)digit_version
function. (#402)presistent_works
option if available, to accelerate training. (#349)thrs
in metrics. (#341)patch_cfg
argument bug in SwinTransformer. (#368)init_weights
call in ViT init function. (#373)_base_
link in a resnet config. (#361)CONTRIBUTING.md
and all tools tutorials. (#320)PatchEmbed
and HybridEmbed
as independent components. (#330)Augments
to support more functions. (#278)LabelSmoothLoss
to support multiple calculation formulas. (#285)num_imgs
can not be evenly divided by num_gpus
. (#299)magnitude_std
bug in RandAugment
. (#309)samples_per_gpu
is 1. (#311)data_pipeline.md
and new_modules.md
. (#265)RandomResizedCrop
and CenterCrop
. (#268)base_head
. (#274)data.test
in MNIST configs. (#264)new_dataset.md
and add Chinese translation of finture.md
, new_dataset.md
.dim
argument for GlobalAveragePooling
. (#236)RandAugment
magnitude. (#240)new_dataset.md
and add Chinese translation of finture.md
, new_dataset.md
. (#243)magnitude_range
in RandAugment
. (#249)analyze_results.py
. (#237)MANIFEST.in
. (#250 & #255)tools/deployment/test.py
as a ONNX runtime test tool.README.md
and some Chinese tutorials.simplify
option in pytorch2onnx.py
. (#200)tools/deployment/test.py
as a ONNX runtime test tool. (#212)device
option to support training on CPU. (#219)README.md
and some Chinese tutorials. (#221)metafile.yml
in configs to support interaction with paper with code(PWC) and MMCLI. (#225)LabelSmoothLoss
so that label smoothing and mixup could be enabled at the same time. (#203)cal_acc
option in ClsHead
. (#206)CLASSES
in checkpoint to avoid unexpected key error. (#207)CONTRIBUTING.md
to align with that in MMCV. (#210)pytorch2onnx.md
tutorial. (#229)setup.py
to support MMCLI. (#232)cutmix_prob
in ViT configs. (#220)Rotate
pipeline for data augmentation. (#167)Invert
pipeline for data augmentation. (#168)Color
pipeline for data augmentation. (#171)Solarize
and Posterize
pipeline for data augmentation. (#172)AutoAugmentation
, AutoContrast
, Equalize
, Contrast
, Brightness
and Sharpness
pipelines for data augmentation. (#179)Shear
pipeline for data augmentation. (#163)Translate
pipeline for data augmentation. (#165)tools/onnx2tensorrt.py
as a tool to create TensorRT engine from ONNX, run inference and verify outputs in Python. (#153)--eval-options
in tools/test.py
to support eval options override, matching the behavior of other open-mmlab projects. (#158)mmcls.apis.test
and tools/test.py
, matching the behavior of other open-mmlab projects. (#162)RandomCrop
and RandomResizedCrop
. (#151)meta_keys
in Collect
. (#149 & #152)--options
. (#91 & #96)build_runner
to make runners more flexible. (#54)BaseDataset
. (#72)CLASSES
override during BaseDateset
initialization. (#85)CLASSES
argument to dataset wrappers. (#66)Accuracy
. (#104)gpu_ids
in distributed training. (#107)Resize
. (#21)shufflenet_v2.py
. (#29)size
in test_pipeline. (#30)Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )