Few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples. While significant progress has been made, the growing complexity of network designs, meta-learning algorithms, and differences in implementation details make a fair comparison difficult. In this paper, we present 1) a consistent comparative analysis of several representative few-shot classification algorithms, with results showing that deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences, 2) a modified baseline method that surprisingly achieves competitive performance when compared with the state-of-the-art on both the mini- ImageNet and the CUB datasets, and 3) a new experimental setting for evaluating the cross-domain generalization ability for few-shot classification algorithms. Our results reveal that reducing intra-class variation is an important factor when the feature backbone is shallow, but not as critical when using deeper backbones. In a realistic cross-domain evaluation setting, we show that a baseline method with a standard fine-tuning practice compares favorably against other state-of-the-art few-shot learning algorithms.
@inproceedings{chen2019closerfewshot,
title={A Closer Look at Few-shot Classification},
author={Chen, Wei-Yu and Liu, Yen-Cheng and Kira, Zsolt and Wang, Yu-Chiang and Huang, Jia-Bin},
booktitle={International Conference on Learning Representations},
year={2019}
}
It consists of two steps:
Step1: Base training
Step2: Meta Testing:
${WORK_DIR}/${CONFIG}/best_accuracy_mean.pth
in default.# base training
python ./tools/classification/train.py \
configs/classification/baseline_plus/cub/baseline-plus_conv4_1xb64_cub_5way-1shot.py
# meta testing
python ./tools/classification/test.py \
configs/classification/baseline_plus/cub/baseline-plus_conv4_1xb64_cub_5way-1shot.py \
work_dir/baseline-plus_conv4_1xb64_cub_5way-1shot/best_accuracy_mean.pth
Note:
Arch | Input Size | Batch Size | way | shot | mean Acc | std | ckpt | log |
---|---|---|---|---|---|---|---|---|
conv4 | 84x84 | 64 | 5 | 1 | 62.01 | 0.49 | ckpt | log |
conv4 | 84x84 | 64 | 5 | 5 | 77.72 | 0.36 | ⇑ | ⇑ |
resnet12 | 84x84 | 64 | 5 | 1 | 75.25 | 0.45 | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 5 | 89.85 | 0.23 | ⇑ | ⇑ |
Arch | Input Size | Batch Size | way | shot | mean Acc | std | ckpt | log |
---|---|---|---|---|---|---|---|---|
conv4 | 84x84 | 64 | 5 | 1 | 51.16 | 0.43 | ckpt | log |
conv4 | 84x84 | 64 | 5 | 5 | 67.99 | 0.36 | ⇑ | ⇑ |
resnet12 | 84x84 | 64 | 5 | 1 | 63.25 | 0.44 | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 5 | 81.67 | 0.3 | ⇑ | ⇑ |
Arch | Input Size | Batch Size | way | shot | mean Acc | std | ckpt | log |
---|---|---|---|---|---|---|---|---|
conv4 | 84x84 | 64 | 5 | 1 | 51.49 | 0.45 | ckpt | log |
conv4 | 84x84 | 64 | 5 | 5 | 70.96 | 0.40 | ⇑ | ⇑ |
resnet12 | 84x84 | 64 | 5 | 1 | 67.26 | 0.5 | ckpt | log |
resnet12 | 84x84 | 64 | 5 | 5 | 84.4 | 0.35 | ⇑ | ⇑ |
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )