1 В избранное 0 Ответвления 0

OSCHINA-MIRROR/open-mmlab-mmfewshot

Клонировать/Скачать
fsce_r101_fpn_coco_10shot-fine-tuning.py 1.2 КБ
Копировать Редактировать Web IDE Исходные данные Просмотреть построчно История
Linyiqi Отправлено 01.11.2021 18:27 3508afc
_base_ = [
'../../_base_/datasets/fine_tune_based/few_shot_coco.py',
'../../_base_/schedules/schedule.py', '../fsce_r101_fpn.py',
'../../_base_/default_runtime.py'
]
# classes splits are predefined in FewShotCocoDataset
# FewShotCocoDefaultDataset predefine ann_cfg for model reproducibility
data = dict(
train=dict(
type='FewShotCocoDefaultDataset',
ann_cfg=[dict(method='FSCE', setting='10SHOT')],
num_novel_shots=10,
num_base_shots=10))
evaluation = dict(interval=5000)
checkpoint_config = dict(interval=5000)
optimizer = dict(lr=0.001)
lr_config = dict(warmup_iters=200, gamma=0.3, step=[20000])
runner = dict(max_iters=30000)
model = dict(
roi_head=dict(bbox_head=dict(num_classes=80)),
train_cfg=dict(
rcnn=dict(
assigner=dict(pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5))))
# base model needs to be initialized with following script:
# tools/detection/misc/initialize_bbox_head.py
# please refer to configs/detection/fsce/README.md for more details.
# load_from = 'path of base training model'
load_from = ('work_dirs/fsce_r101_fpn_coco_base-training/'
'base_model_random_init_bbox_head.pth')

Опубликовать ( 0 )

Вы можете оставить комментарий после Вход в систему

1
https://api.gitlife.ru/oschina-mirror/open-mmlab-mmfewshot.git
git@api.gitlife.ru:oschina-mirror/open-mmlab-mmfewshot.git
oschina-mirror
open-mmlab-mmfewshot
open-mmlab-mmfewshot
main