Detecting objects and estimating their viewpoint in images are key tasks of 3D scene understanding. Recent approaches have achieved excellent results on very large benchmarks for object detection and view-point estimation. However, performances are still lagging behind for novel object categories with few samples. In this paper, we tackle the problems of few-shot object detection and few-shot viewpoint estimation. We propose a meta-learning framework that can be applied to both tasks, possibly including 3D data. Our models improve the results on objects of novel classes by leveraging on rich feature information originating from base classes with many samples. A simple joint feature embedding module is proposed to make the most of this feature sharing. Despite its simplicity, our method outperforms state-of-the-art methods by a large margin on a range of datasets, including PASCAL VOC and MS COCO for few-shot object detection, and Pascal3D+ and ObjectNet3D for few-shot viewpoint estimation. And for the first time, we tackle the combination of both few-shot tasks, on ObjectNet3D, showing promising results. Our code and data are available at http://imagine.enpc.fr/~xiaoy/FSDetView/.
@inproceedings{xiao2020fsdetview,
title={Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild},
author={Yang Xiao and Renaud Marlet},
booktitle={European Conference on Computer Vision (ECCV)},
year={2020}
}
Note: ALL the reported results use the data split released from TFA official repo. Currently, each setting is only evaluated with one fixed few shot dataset. Please refer to DATA Preparation to get more details about the dataset and data preparation.
Following the original implementation, it consists of 2 steps:
Step1: Base training
Step2: Few shot fine-tuning:
# step1: base training for voc split1
bash ./tools/detection/dist_train.sh \
configs/detection/fsdetview/voc/split1/fsdetview_r101_c4_8xb4_voc-split1_base-training.py 8
# step2: few shot fine-tuning
bash ./tools/detection/dist_train.sh \
configs/detection/fsdetview/voc/split1/fsdetview_r101_c4_8xb4_voc-split1_1shot-fine-tuning.py 8
Note:
work_dirs/{BASE TRAINING CONFIG}/base_model_random_init_bbox_head.pth
.
When the model is saved to different path, please update the argument load_from
in step3 few shot fine-tune configs instead
of using resume_from
.load_from
to the downloaded checkpoint path.Note:
Arch | Split | Base AP50 | ckpt | log |
---|---|---|---|---|
r101 c4 | 1 | 73.7 | ckpt | log |
r101 c4 | 2 | 74.6 | ckpt | log |
r101 c4 | 3 | 73.2 | ckpt | log |
Arch | Split | Shot | Base AP50 | Novel AP50 | ckpt | log |
---|---|---|---|---|---|---|
r101 c4 | 1 | 1 | 61.1 | 35.5 | ckpt | log |
r101 c4 | 1 | 2 | 67.9 | 49.9 | ckpt | log |
r101 c4 | 1 | 3 | 68.1 | 54.6 | ckpt | log |
r101 c4 | 1 | 5 | 69.9 | 60.5 | ckpt | log |
r101 c4 | 1 | 10 | 71.7 | 61.0 | ckpt | log |
r101 c4 | 2 | 1 | 65.0 | 27.9 | ckpt | log |
r101 c4 | 2 | 2 | 69.6 | 36.6 | ckpt | log |
r101 c4 | 2 | 3 | 70.9 | 41.4 | ckpt | log |
r101 c4 | 2 | 5 | 71.3 | 43.2 | ckpt | log |
r101 c4 | 2 | 10 | 72.4 | 47.8 | ckpt | log |
r101 c4 | 3 | 1 | 61.4 | 37.3 | ckpt | log |
r101 c4 | 3 | 2 | 69.3 | 44.0 | ckpt | log |
r101 c4 | 3 | 3 | 70.5 | 47.5 | ckpt | log |
r101 c4 | 3 | 5 | 72.2 | 52.9 | ckpt | log |
r101 c4 | 3 | 10 | 73.1 | 52.9 | ckpt | log |
Note:
Arch | Base mAP | ckpt | log |
---|---|---|---|
r50 c4 | 21.3 | ckpt | log |
Arch | Shot | Base mAP | Novel mAP | ckpt | log |
---|---|---|---|---|---|
r50 c4 | 10 | 21.1 | 9.1 | ckpt | log |
r50 c4 | 30 | 23.5 | 12.4 | ckpt | log |
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )