Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances, and is useful when manual annotation is time-consuming or data acquisition is limited. Unlike previous attempts that exploit few-shot classification techniques to facilitate FSOD, this work highlights the necessity of handling the problem of scale variations, which is challenging due to the unique sample distribution. To this end, we propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD. It generates multi-scale positive samples as object pyramids and refines the prediction at various scales. We demonstrate its advantage by integrating it as an auxiliary branch to the popular architecture of Faster R-CNN with FPN, delivering a strong FSOD solution. Several experiments are conducted on PASCAL VOC andMS COCO, and the proposed approach achieves state of the art results and significantly outperforms other counterparts, which shows its effectiveness. Code is available at https://github.com/jiaxi-wu/MPSR.
@inproceedings{wu2020mpsr,
title={Multi-Scale Positive Sample Refinement for Few-Shot Object Detection},
author={Wu, Jiaxi and Liu, Songtao and Huang, Di and Wang, Yunhong},
booktitle={European Conference on Computer Vision},
year={2020}
}
Note: ALL the reported results use the data split released from TFA official repo. Currently, each setting is only evaluated with one fixed few shot dataset. Please refer to DATA Preparation to get more details about the dataset and data preparation.
Following the original implementation, it consists of 2 steps:
Step1: Base training
Step2: Few shot fine-tuning:
# step1: base training for voc split1
bash ./tools/detection/dist_train.sh \
configs/detection/mpsr/voc/split1/mpsr_r101_fpn_2xb2_voc-split1_base-training.py 8
# step2: few shot fine-tuning
bash ./tools/detection/dist_train.sh \
configs/detection/mpsr/voc/split1/mpsr_r101_fpn_2xb2_voc-split1_1shot-fine-tuning.py 8
Note:
work_dirs/{BASE TRAINING CONFIG}/base_model_random_init_bbox_head.pth
.
When the model is saved to different path, please update the argument load_from
in step3 few shot fine-tune configs instead
of using resume_from
.load_from
to the downloaded checkpoint path.Note:
Arch | Split | Base AP50 | ckpt | log |
---|---|---|---|---|
r101 fpn | 1 | 80.5 | ckpt | log |
r101 fpn | 2 | 81.3 | ckpt | log |
r101 fpn | 3 | 81.8 | ckpt | log |
r101 fpn* | 1 | 77.8 | ckpt | - |
r101 fpn* | 2 | 78.3 | ckpt | - |
r101 fpn* | 3 | 77.8 | ckpt | - |
Note:
Arch | Split | Shot | Base AP50 | Novel AP50 | ckpt | log |
---|---|---|---|---|---|---|
r101 fpn* | 1 | 1 | 60.6 | 38.5 | ckpt | log |
r101 fpn* | 1 | 2 | 65.9 | 45.9 | ckpt | log |
r101 fpn* | 1 | 3 | 68.1 | 49.2 | ckpt | log |
r101 fpn* | 1 | 5 | 69.2 | 55.8 | ckpt | log |
r101 fpn* | 1 | 10 | 71.2 | 58.7 | ckpt | log |
r101 fpn* | 2 | 1 | 61.0 | 25.8 | ckpt | log |
r101 fpn* | 2 | 2 | 66.9 | 29.0 | ckpt | log |
r101 fpn* | 2 | 3 | 67.6 | 40.6 | ckpt | log |
r101 fpn* | 2 | 5 | 70.4 | 41.5 | ckpt | log |
r101 fpn* | 2 | 10 | 71.7 | 47.1 | ckpt | log |
r101 fpn* | 3 | 1 | 57.9 | 34.6 | ckpt | log |
r101 fpn* | 3 | 2 | 65.7 | 41.0 | ckpt | log |
r101 fpn* | 3 | 3 | 69.1 | 44.1 | ckpt | log |
r101 fpn* | 3 | 5 | 70.4 | 48.5 | ckpt | log |
r101 fpn* | 3 | 10 | 72.5 | 51.7 | ckpt | log |
Note:
Arch | Base mAP | ckpt | log |
---|---|---|---|
r101 fpn | 34.6 | ckpt | log |
Arch | Shot | Base mAP | Novel mAP | ckpt | log |
---|---|---|---|---|---|
r101 fpn | 10 | 23.2 | 12.6 | ckpt | log |
r101 fpn | 30 | 25.2 | 18.1 | ckpt | log |
Вы можете оставить комментарий после Вход в систему
Неприемлемый контент может быть отображен здесь и не будет показан на странице. Вы можете проверить и изменить его с помощью соответствующей функции редактирования.
Если вы подтверждаете, что содержание не содержит непристойной лексики/перенаправления на рекламу/насилия/вульгарной порнографии/нарушений/пиратства/ложного/незначительного или незаконного контента, связанного с национальными законами и предписаниями, вы можете нажать «Отправить» для подачи апелляции, и мы обработаем ее как можно скорее.
Опубликовать ( 0 )